
Bock No, 406 

CoPY oF Copy..No. & 

@ Amendment No, 

fdercon-Eliatt Avionic Systems Limited 
Airport Works, Rochester, Kant, ME1 24K 

A GEGMarconi Electronics Company 

Telephone: Medway (0634) 44400 
Telegrams: Ehoteuto Rochester 
Telex: 96332/4 

@The Copyright in this document ts the prope 

expreus terme that 1 ete betrestes i-cez 

riy of Eliett Brothere {Loadan) Limited. The document ie eupplied by Elion Brothers (Loadan) 

falandithgt itmay not be copted, used de diselosrdto othere for szy purpose except as watiic: 

MLAS.D. 
LIBRARY, 

This Book forms part of the k 

Software Library. 

If there ie a G tESN MASD L 
on this page, then is is 
Copy of the Master Book, for whic 

an UPDATING service is available; 

so it could be up-to-date. 

If there is NO stamp or only a 
XEROXED stamp on this ps th 
copy hes NO updating s 

reader uses it at his 

Compiled fron Various Sources; 

Issued by U.J. Froggatt. 

nan Rog bET abe 
Teawy Bef ay\\ 

i by thie Company. 



_ PREFACE, 

This book describes the following tapes:- 

905 FORTRAN COMPILER, 1/1/14, Binary Mode 3; 

- 905 FORTRAN LIBRARY VOl 1, 1/1/74, Intermediate Kode 3; 
905 FORTRAN LIBRARY VOL 2, 1/1/74, Intermediate Mode 3. 

®hese tapes enable FORTRAN programs to be run on a 

905 ex 9206 computer with at least 15K store. 



905 FORTRAN COMPILER, 1/i/T4, Binary KMede 3; 

905. PORTRAN 1, 1/1/14, Intermediate Fode 3; 

905 FORTRAN LIBRARY VOL 2, 1/1/74, Intermediate Kode 3. 



CHAPTER 

CHAPTE 2 

Preface 

THE CHARACTER SET 

ELEMENTS OF THE 905 FORTRAN LANGUAGE 

2.1 Constants ~ Definition 

2.2 Integer Constants 

2.3 Real Constants 

2.4 Other Types of Constants 

2.4.1 Double Precision Constants 

2.4.2 Complex Constants 

2.4.3 Logical Constants 

. 2.4.4 Hollerith Constants 

2.5 Variables 

2.5.1 Definition 

2.5.2 Uses of Variables 

2.5.3 Identifiers 

2.5.4 Integer or Fixed Point Variables 

2.5.5 Real Variables 

2.5.6 Double Precision Variables 

2.5.7 Complex Variables 

2.5.8 Logical Variables 

2.5.9 Arrays 

2.5.10 Storage of Arrays 

2.6 Expressions 

2.6.1 General 
2.6.2 Order of Evaluation 

Treatment of Integer and Real Values 2.6.3 

2.6.4 Results of Integer Division 

2.6.5 Exponentiation Results 

2.6.6 Types of Allowable Expressions 

Ie
 

te
t 

be
t 

be
t 

e
b
 

en
 

OF
 

So
ar
 
G
t
 

-
 

o 
~ 

16 

he
 

=!
 

N
O
N
 

N
U
O
N
 

oY
 

u
n
 

un
 

ur 
Ge
 

¢ 
y 

fs 
to
 

2
 

tv
 

ea 
N
W
 

YD
: 

N
A
D
 
O
O
,
 



CHAPTER 3 

CHAPTER 4 

CHAPTER 5 

STATEMENTS: 29-38 

3.1 Format 29 
3.2  Arithrnetic Assignment Statements 29 

3.3 -Mixed Mode Arithmetic 300 
3.4 Control Statements 31 

3.4.1 Statement Number or Labels 31 

3.4.2 GOTO Staternents 32 
3.4.3 Unconditional GOTO Statement 32 

3.4.4 Computed GOTO Statement 33 
3.4.5 Assignment Statement and Assignment 

: GOTO 33 
“3.4.6 The Arithmetic IF Statement 34 

3.4.7 The Logical If Statement and Logical 
. Statements 34 

3.4.8 CONTINUE Statement 36 

3.4.9 DO Staternent 36 

3.4.10 PAUSE Statement 37 

3.4.11 STOP Statement 38 
3.4.12 END Statement 38 

3.4.13 RETURN Statement 38 

SPECIFICATION AND DATA STATEMENTS 39-48 
4.1 DIMENSION Statements 39 

4.2 COMMON Statements . 40 

4.2.1 COMMON Staterrent with Named 

. COMMON 41 

-4.3 EQUIVALENCE Statements 42 

4.4 Restriction on Sequence of Items in 

Equivalence Group 43 

4.5 Restriction on Names in Specification : 

Statements 43 

4.6 Examples of Statements 44 

4.7 Use of Store Map 45 

4,8 Type and EXTERNAL Statement 45 

4.8.1 Type Statement 45 

4.8.2 EXTERNAL Statement 46 

4.9 DATA Statement 47 

4.10 Restrictions on the Sequence of Items within 

a Subprogram “48 

INPUT AND OUTPUT 49-66 

“§.1 Input and Output Statements 49 

5.2 The List of an Input or Output Statement 50 

5.3 Effect of Numeric Item in READ and WRITE 

: : . Lists 52 

(14) 



CHAPTER 6 

CHAPTER 7 USE OF MASIR/SIR CODING 

7. 

TEXT 

1 Code Section 

7.1.2 Format 

7.1.3 Form of Machine Code Ins tructions 

within a FORTRAN Unit 

7.1.4 Labelling Instructions 

7.1.5 Operand 

7.1.6 Example 

7.1.7 Returnto FORTRAN Text 

7.1.8 Constant on Symbolic Names 

.2 Program Units in Machine’ Code - 

Page 

“5.4 PORMAT Statement 52 

5.4.1 General Form of FORMAT Statements 52 

5.4.2 Repeat Counts 54 

5.4.3 External Records and Newlines 54 

.5.4.4 Field Descriptors Available 55 

5.4.5 Scale Factors 56 

5.4.6 Input of Numbers under Format Control 56 

5.4.7 ield Specification I (Integer) 57 
5.4.8 Field Specitication F (external to fixed: 

point) 57 

5.4.9 Field Specification E (floating point) 58 

5.4.10 Field Specification G (Freepoint) 58 

5.4.11 Field Specification D (double precision} 59 

5.4.12 Field Specification L (logical) 59 

5.4.13 Conversion for Complex Numbers 59 

5.4.14 Field Specification A (alphanumeric) 60 

5.4.15 Field Specification X (skip) 61 

5.4.16 Field Specification H (Hollerith) 61 

5.5 Examples of Field Specifications 62 

5.6 Number out of range on Output ‘63 

5.7 Routine FORMAT Statement Input 64 

5.8 Free Format Input. 64 

5.8.1 Data Tapes for FreeeForrnat Input 65 

5.8.2 Examples : 65 

FUNCTIONS AND SUBROUTINES 67-74 

6.1 Subprograms ~ General 67 

6.2 Main Programs, Subprograms and Program 

Units 67 

6.3 Types of Procedure 68 

6.4 Subprogram Head 68 
6.5 The Subprogram Body 69 

6.6 Examples of Function and Subroutine : 

Subprograms 70 

6.7 Calling a Subprogram 70 

6.8 Examples of Calling Subprograms 71 

6.9 Statement Functions : TW 

WITHIN FORTRAN 75-82 

75 

75 

75 
75 

76 
76 
73 

¥8 
78 

(414) 



CHAPTER $ oo: 

CHAPTER 9 3: 

CHAPTER 10 : 

7 CHAPTER ll: 

~ APPENDIX 1 : 

APPENDIX 2 

APPENDIX 3 

Page 

83-88 

gram Writing : 83 

Fixed Format 83 

: 84 

8&5 

86 

rogram in Freee 

Format 86 

Programs 87 

2 89-92 

. 1 89 

9.2 " Secondary Output : 89 

9.3 Error Reports 7 89 
9.4 Data Map , - . * 

ERROR MESSAGES 93~106 

10.) Compile-time Errors ~ . 93 

10.2 Loader Error Messages 101 

10.3 Run Time Errors ~ 402" 

10.3.1 Error Reports from Mathematical 

Functions 102 

10.3.2 Input/Output Error Reports 103 

10.3.3 Control Error Reports 105 

OPERATING INSTRUCTIONS 107-112 
Ll.1. Compilation 107 
11.2, 900 Loader Cperating Instructions for 

: FORTRAN use 108 

11.3 Loader Option Bits 109 

11.4. Store Layout 110 

“11.4.1 Loading 119 

11.4.2 Different Store Sizes 110 

11.4.3 Library 110 

11.5 Store Map at Run-time 111, 

BASIC SUPPLIED FUNCTIONS 1-1-1-6 

DIFFERENCES BETWEEN ASA AND 905 FORTRAN 2-1 - 

EFFICIENCY CONSIDERATIONS 3-1 

(iv) 

2-2 



PREFACE 

The.information contained within this publication describes the FORTRAN 

language applicable to 905 series 18-bit machines and termed '905 FORTRAN'; 

the origin of the word FORTRAN is derived from the words FORmulae 

TRANslations. 905 FORTRAN contains most of the features of full standard 

ASA FORTRAN, see Appendix 2, 

905 FORTRAN can be used on any 905 Series 18~bit machine which includes 

teleprinter, punch and reader facilities and has a minimum store size of 16K, 

FORTRAN prograrns must only be written and/or punched in characters which 

are contained in the 900 series internal character code, see Chapter 1. 

As with all other languages (e.g. English, Mathematics and the programming 

languages COBOL, USERCODE ete.) rules are applicable to the use of 905 

FORTRAN. These rules are termed the 'syntax’ of the language. The 

meanings given to elements of the language are termed the ‘semantics' of 

the language. Elements of the language take the form of characters used 

singly or in various combinations to form statements, the uses of which 

are governed by the syntax of the language.’ 

Although a programmer may prepare a program which is syntactically 

perfect, the semantics of that program may not necessarily fulfil the purpose 

of that program. It is therefore essential that programmers understand iully 

the implication of both the syntax and the semantics of the language and of a 

program written in that language. . - 

Page 1 & @ 



CHAPTER l: THE CHARACTER SET 

As all elements consist of characters used either singly or in combination, 

characters are the first items to be detailed. 

The standard FORTRAN character set consists of the following characters? 

A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, @,R. S, T, U,V, W, 

x, ¥, Z, 0, 1, 2, 3, 4, 5, 6, %, 8, 9, and: 

Gharacter Name of Character 

Blank (space in paper tape code) 

= Equals 

+ Plus 

~ Minus 

%* : Asterisk 

/ Slash 

( Left Parenthesis 

) Right Parenthesis 

Comma 

Decimal Point 

g ; Currency Symbol 

Standard FORTRAN programs must be written using the above characters. 

Other characters, which are not part of the standard character set, rnay 

be used in Hollerith strings and Hollerith constants; the programmer is 

warned that use of other characters may restrict compatabili ity with other 

FORTRAN implementations. 

The full set of characters available for writing 905 FORTRAN programs 

are the 64 characters having internal code equivalents in the 96 Qs series” 

character code. This code, with the full paper tape representati 

given in the table at the end of this chapter. It is base ed on the 

Standard variant of the International Standards Organisation (I 

The following characters have special significance: 

Space . This is the character referred to as ‘bl 

° standard, in accordance with punched c 

Except where explicitly stated, space 

characte- and may be used freely to im 

of programs, 

Newline (Line feed on some teleprinters) 

"Newline normally indicates the begian 

line. Within a program, lines may be 

ignoring null (paper tape bla ank), car 

Newline may not be included in a Hell 



NOTE: The codés for CARRIAGE RETURN, ERASE and RUNOUT, 
, though they may appear ina FORTRAN data or program tape, 

are ignored when read by the compiler. 

The character for HALTCODE is used to halt the machine at the end of a 
tape. Ifa program comprises more than one tape, each tape must be 
terminated with a HALTCODE. This termination of tape makes possible 
the reading in of consecutive tapes. Each HALTCODE must follow a new 
line. 



ir
ae
 

905 FORTRAN Character Set 

by program, 

ISO Code Value with Telecode Binary SIR Internal Code NOTES ; 
Value Parity Character Pattern Octal Decimal 

0 ) Null 00000. 000 Blank on paper iape; 
ignored by program. 

L 129 10000. 001 | 

2 130 10000, 010 

3 3 00000.011 

4 1328 10000. 100 

5 5 00000.101 

6 6 00000. 110 elllegal characters. 

7 135 Bell 10000. 111 

8 136 10001. 000 

9 9 Hor. Tab 00001. 9001 [Horizontal tab. Ignored 

by teleprinter; equivalent 

to space. 

10 10 Line Feed 00001.910 01 1 nine feed. Causes newline 
4 

il 139 10001.011 | : : \Ilegal characters 
i2 12 00001, 100 i 

13 141 Car Ret, 16001,101 oy pros return; ignored 



TIT 
T
o
o
t
 

Page 6 

| 
657 

L€ 

Ort 
"
t
r
o
o
c
 

, 
Oe 

o
g
 

| 
—
—
 

tot 
'T 1000 

62 
62. 

| 
OT 

*TTOOt 
951 

8z 

Tro 
'TtL900 

LZ 
Lz 

gropowaceyo 
pezotry 

O
L
O
T
T
o
o
t
 

PST 
92 

TOO 
"ETOOT 

S
t
 

G2 

000 
"T1000 

#2 
¥ 

IIT 
*0O0TOO 

62 
£2 

OTT 
"OTOOT 

ost 
22 

S 
TOT 

OTOOT 
FI 

12 

‘oduq 
s
o
d
e
d
 

rc 
: 

.qyodut 
sqyepy 

‘zoqutzdotey. 
Aq 

posouar 
fayey 

9
0
 

‘01000 
e
H
 

0
2
 

02 

110 
“OT00T 

LbT 
bt 

. 
010 

*0t000 
gt 

St 

s
r
o
j
o
v
a
v
y
y
 
r
e
s
e
r
 < 

100 
"OTO00 

Lt 
LI 

000 
‘OTOOT 

POT 
91 

TIT 
"T0000 

Sl 
St 

OTT 
"10001 

241 
#1 

, 
peuree 

d 
T2290 

uroyed 
19z9e81eYD 

A
y
e
 

OnTeA 
S@ 

L
O
N
 

S
p
o
5
 

yeuzeqT] 
YIS 

Kxveurg 
apoosta 

1 
WITM 

anTeA, 
e
p
o
d
 

Ost 



BT 
22 

O
T
O
O
T
I
O
I
 

Zz 
BLT 

og 
| 

sudta 
it 

1Z 
100 

*OTTOI 
I 

2L1 
GF 

91 
Oz 

000 
OTIO00 

9) 
SF 

, 
Sk 

(yseIs) 
saprqog 

St 
LI 

TET 
'TOTOL 

/ 
GLI 

L¥ 

d
o
y
 

TInt 
bI 

9T 
OTT 

’ITOTOO 
. 

oF 
OF 

(uoydAy) 
snuty 

et 
ST 

TOT 
to 

TCO 
- 

Ge 
Gi 

eulUtE 
zt 

ca 
O
O
T
L
O
T
O
T
 

‘ 
ZLI 

a 

SUT 
“tt 

€1 
TTO"TOTO0 

| 
+ 

oP 
et 

ystroqsy 
ot 

zt 
O10 

TOTOT 
Fy 

OLT 
2P 

stsoyquoreg 
Wsry 

6 
It 

TOO 
"TOTOT 

( 
69T 

tr 

stsayjuorted 
yoy 

3 
on 

000 
“00TGO 

) 
oF 

oF 

(ejonb 
uodo) 

oynoy: 
L 

40 
Tt 

‘O0TOO 
y 

OE 
6e, 

puvsazodury 
9 

90 
OTT 

“OOTOT 
R 

991 
ae 

qupo79g 
S 

0 
TOT 

‘0001 
%, 

$91 
Le 

"toquids 
Aoueaano 

~ 
xeTI0c 

% 
ca) 

0OT 
“O0TCO 

g 
9¢ 

gE 

‘szajutideyze; 
ewos.uo 

F 
€ 

£0 
T10*OOTOT 

3 
£91 

GE 

sajong 
Zz 

z0 
010 

“00100 
is 

we 
ve 

*"rayovaAvUO 

Tesorry 
+ 
Yreur 

uoTeurepoxg 
TOO 

“O0TOO 
; 

€¢ 
ee 

soedg 
0) 

00 
000 

‘OOTOT 
aoedg 

oot 
| 

Zé 

‘ 
T
e
w
r
I
9
g
 

= 
TeI2IN 

u
L
9
N
e
d
g
 

L
O
P
O
e
I
T
Y
 

A
M
I
E
 

O
N
I
T
A
 

SALON 
apod 

jeurejey 
WS 

Anvurg 
aposolaL 

UyIM 
enTe A 

#P09 
OST 

7 = Page



9
 

vy 
. 

0
O
T
"
O
0
0
T
O
 

a 
89 

89 
: 

se 
| 

Ito 
O0oTT 

fa) 
S6T 

k
o
 

° 
sroyory 

be 
| 

2 
01000670 

a 
9
9
 

9
9
 

é 
ee 

Th 
TO0 

“
O
O
O
T
O
 

Vv 
S9 

$9 
: 

‘saoquiad 
, 

‘ 
: 

~O79} 
O9UIOS 

UO 
N
O
A
T
I
D
 

| 
2
 

OF 
000 

“
O
0
0
T
I
 

)
 

261 
AS) 

‘
g
z
o
j
u
r
i
d
o
e
y
 

. 
, 

oUtos 
UO 

(OT) 
y
d
p
r
o
s
q
n
g
 

Le 
TIT 

‘
T
T
I
0
0
 

. 
é 

£g 
£9 

wey} 
t
e
y
w
e
t
p
 

o¢ 
9¢ 

OTT 
'
T
T
I
O
T
 
{
 

< 
061 

29 

Oo} 
p
e
n
b
a
 

6Z 
SE 

T
O
T
*
T
I
L
(
O
T
 

= 
681 

19 

wey, 
s
s
o
7
 

— 
Be 

VE 
O
O
T
I
T
{
(
0
0
 

>
 

09 
09 

u
o
p
o
o
r
u
e
g
 

LZ 
ce 

T
T
O
“
T
L
T
O
T
 

: 
Lot 

6S 

U
o
T
O
D
 

| 
92 

Ze 
O
T
O
*
T
T
I
O
O
 

: 
8g 

8S 

SZ 
Te 

TOO 
"
T
T
1
0
0
 

6 
LS 

LS 

; 
ve 

0
 

O
O
G
*
T
I
T
O
T
 

$ 
PST 

‘ 
96 

s
y
1
8
t
q
 

€@ 
LZ 

TUT 
O
L
T
O
T
 

, 
Z 

eel 
GS 

zz 
92 

OTT 
OTTO0 

9 
eS 

| 
¥S 

a 
oeean 

TZ 
SZ 

TOT 
OTTIOO 

S 
€g 

iss) 
; 
7
 

Og 
ve 

aot 
‘orTrot 

id 
ost 

ras 

&t 
CZ 

T
T
O
O
T
T
O
O
 

¢ 
. 

%1S 
TS 

T
e
a
I
T
o
9
C
 

| 
T
V
G
 

u
s
e
p
e
g
 

r
o
p
o
e
a
e
y
y
 

A
y
a
r
e
g
 

’ 
D
A
I
V
A
 

‘ 
; 

S
a
.
L
O
N
 

; 
a
p
o
D
 

Teuxejay 
WIS 

A
x
e
u
r
g
 

opodajya 
y, 

UsIM 
O
N
T
e
A
 

2
0
D
 

OS! 



SS 
29 

TIT 
‘Ototr 

. 
a
e
 

Siz 
- 

28 
‘es 

99 
OLTOTOTO 

A 
9
g
 

98 
gS 

99 
TOT 

OTOTO 
a 

Sg 
8 

zs 
9 

OOTOTOTT 
L 

z1z 
8 

1S 
$9 

11001010 
$ 

£8 
£8 

0g 
29 

O10 
OTOTY 

a 
O12 

28 

6% 
i9 

100 
“OTOTY 

se) 
602 

13 
ay 

09 
900 

*OTOTO 
a 

08 
08. 

LB 
LE 

TIT 
‘TOOT! 

fe) 
02 

6L 
o
F
 

9S 
O
T
 

T00TO, 
N 

aL 
B
L
 

Sb 
SS 

TOT‘ 
TOOTO 

Ww 
LL: 

LL 
‘St0u0T 

< 
‘bP 

¥S 
OOT*TOOTT 

: 
1 

02 
OL: 

hy 
€S 

to 
‘ToOTO 

x 
GL 

GL 
2b 

zs. 
O10 

100tT 
‘f 

Z20z 
eL 

1b 
1s 

100 
“TOOTT 

I 
102 

€L 
oF 

og 
| 

oo0*to0t0 
H 

Ze 
ze 

bE 
LP 

ITT 
000TO 

D 
IL 

tz 
ge 

9% 
OTT 

OOOTT 
a 

861 
OL 

Lg 
So 

101 
‘OOOTT 

a 
L6T 

69 

p
e
u
t
o
e
d
 

| 12790 
u
s
o
y
H
e
d
 

x
o
p
e
r
e
y
u
y
 

Agiaeg: 
ONTZA 

S
A
L
O
N
 

epod 
[
e
u
r
e
 

Wis 
“
|
 

Azemig 
apoosya 

gy, 
U
A
 

onTeA, 
epod 

Ost 

Page 9



ty 
TS 

100 
“TOTIO 

t 
SOT, 

SOT 

___OF. 
og 

000 
TOTTI 

y 
ZE2 

POT, 

6€ 
LY 

TUT 
‘OOTIT 

3 
Tez 

col 

gE 
9¥ 

“OTT 
“OOTIO 

z 
ZO 

zor 

LE 
St 

TOT 
*OOTIO 

a 
tot 

Tot 
ry rojuradayoy 

uo 
e
s
e
 

roddy 
9€ 

bY 
O
O
T
O
O
T
T
I
 

P 
82z 

O01 

S¢ 
€% 

TIO 
“OOTTO 

> 
66 

66 

ve 
2h 

O10 
OOTIT 

4 
92z 

"86 
ee 

1c 
100 

OOTTT 
2 

G22 
16 

*
(
S
t
o
q
u
r
a
d
a
y
e
3
 

autos 
Uo 

@) 
WWE 

De 
aaetyH 

000 
‘
O
O
T
I
O
 

. 
56 

96 

_ 
(
s
2
z
e
z
a
t
a
d
e
e
y
 

euros 
UO) 

‘zvYyo 
oUTTTOpUN 

€9 
LL 

ITT 
‘LTOTO 

G6 
66 

‘reyutad 
oury 

uo 
4, 

29 
94 

OTT 
TIOTI 

Ll 
zzz 

¥6 
"goxoerg 

Ww sTy 
19 

SL 
TOT’ 

ETOTT 
[ 

12z 
66 

(
s
a
o
q
u
r
s
d
e
y
s
}
 

| 
outos 

UO 
F) 

Yse[s 
v
s
i
9
A
a
y
 

09 
$L 

OOI‘TIOTO 
\ 

26 
26 

yOyovrg 
yo9T 

6S 
EL 

T{O°TIOTT 
7 

61Z 
16 

8g 
Zk 

OTO*TTOTO 
Z 

06 
06 

$19939'T 
Lg 

TL 
TIO'T 

TOTO 
K 

68 
63° 

95 
OL 

OOO 
TIOTI 

x 
912 

88 

S
o
L
L
O
N
 

p
e
u
r
r
o
a
c
 

| 
[
e
1
9
0
 

u
r
a
q
y
e
d
 

r
o
z
,
D
e
r
L
Y
D
 

A
y
t
i
z
e
g
-
 

a
n
i
a
 

“ 
Spoyd 

TeureIUl 
WIS 

A
a
v
u
t
g
 

apooss;je], 
Y
I
M
 

ONT 
BA 

epoD 
Ost 

- Page 10



‘
w
r
e
a
d
o
a
d
 

Aq 
pozou8t 

- 
oseist 

TYECUIII 
SS2 

L21 
OTT 

’TITIO 
921 

G21 
"srojoereyo 

TesoqT Ty 
TOT‘TTITO 

S2t 
Szt° 

OOTTITIT 
262 

PZT 

TIO 
‘TTITO 

C21 
€2@I 

8g 
2b 

OO 
*TTTTT 

z 
052 

Zz 

Lg 
TZ 

TOO*LTTIT 
A 

6F2 
T2t 

9g 
OL 

000 
TITIO 

x 
O21 

ral 

SS 
19 

TIT 
‘OTIIO 

an 
6TT 

bit 

| 
$5 

99 
OLE 

‘OTIIt 
A 

962 
Bit 

ae 
59 

TOT 
‘OTTIL 

no 
Se 

Lit 

2g 
%9 

COT 
O
T
T
O
 

a 
9TT 

911 

1S 
€9 

TLO“OTTIT 
8 

Cvz 
STi 

xoqurzdeqoy 
“0S 

29 
OO 

OTITO 
a 

cael 
FIL 

uo 
aseo 

roddq4 
6% 

19 
TOO 

sTTTO 
b 

etl 
€1l 

ab 
09 

O00 
KLIIT 

d 
OFZ 

Zt 

Lb 
LS 

TIT 
TOTIO 

° 
TIT 

ttl 

9F 
9g 

OLT 
“LOTTI 

u 
Bez 

ott 

Gb 
Sg 

TOT'TOTII 
ux 

LEZ 
601 

bP 
¥S 

OOT*IOTIO 
T 

B01 
801 

cb 
€S 

ITO 
‘TOTTI 

x 
SEZ 

LOT 

ep 
zg 

OTO“TOTTO 
f 

901 
9OT 

S
U
L
O
N
 

" 
T
e
u
r
t
s
e
 

dg 
T
2
1
9
0
 

U
L
I
O
H
e
T
 

F
o
j
o
e
r
e
y
y
 

A
W
E
 

gy 
o
n
T
e
 

sy 

. 
e
p
o
d
 

T
e
u
r
e
z
U
l
 

Wis 
A
x
e
u
r
g
 

a
p
o
o
e
;
e
 

L 
Y
U
M
 

a
n
l
e
a
 

e
p
o
d
 

OST 

& 12 ge Jt 
aaa) a ~P y



GHAPTER 2: ELEMENTS OF THE 905 FORTRAN LANGUAGE. 

This chapter defines the elements from which 905 FORTRAN statements 

are composed. They are: . 

a) Constants 

b) Variables 

c) Identifiers 

_¢ Operators 

e) Expressions - 

f} Functions 

2,1 Constants»D efinition 

A constant is a value which remains unchanged throughout its use; it can 

be used in one or more statements. For example, in the statements: 

x=at3 

y=bt4 

x,a,y and b can vary (i.e. are variables) 

+3 and +4 remain unchanged (i.e. are constants). 

Constants can be of various types, i.e. 

Integer constant 

Real constant 

Double precision constant 

Complex constant 

Logical constant 

Hollerith constant 

‘For many straightforward programs it is sufficient to use integer and 

real constants only; programmers unfamiliar with FORTRAN should avoid 

the use of other types until more experience is obtained inthe use of FORTRAN, 

“If the value of an ihteger, real or double precision constant is positive, 8 Pp 
the inclusion of a plus sign preceding the constant is optional; if the value 

represented is negative, a minus sign must precede the constant. An 

unsigned value is assumed to be positive. . . 

os mo oo . Page 13 



Zee Integer Constants 

These constants consist of whole number are written a Sa 

set of digits either optionally preceded by a plus sceded a 

minus sign. 

An integer constant can take any integer value in the ra 

~ 131071<constant& 131071 

Examples of valid integer constants are: 

ie) 

+9387 . 

©2001 

6. 

Examples of invalid integer constants are: 

12.78 - contains a fractional part and is therefore a real constant 

~10,000  « contains invalid character i.e. comma 

16748932 « outside the value range for an integer constant 

Zed Real Constants 

“A veal constant can take any (real) value in the range: 

~10!9 Z constant £1019 (including zero) 

Real is used in this instance in its mathematical sense of 

value not containing an imaginary part. : 

A real constant may be written in one cf the forms which follows: 

*4 a) _—sC A: sett of digits containing a decirnal point E.g. 

2.5 05 123. 

b) A set of digits which can contain an optional decimal point, 

followed by a capital letter E and an optionally signed integer 

of one or two digits length. E.g. 

2.551 36E@15 .03E+12 

NOTE; In either form the signing of a real constant is optional. 

The integer after the character E represents a power of 10 multiplying 

the number that precedes the E. Inthe examples given the values 

represented are! 

2.5*10? 3610745 2 . . .03*10 

— ; ~ , . . Page 14 



Esamples of valid real constants are: ; 

0.0 
; 

=2000, 0 

2 +234, 

"5 ons6 (5108) 

-7,E-12 (.70%10714) 

Examples of invalid real constants are: 

12,345.6 is an invalid character 

M4234 - no decimal point and is therefore an integer constant 

5.86E2.5 ~ exponent not an integer 

1.6E+81 + value too large for the range of real constant values 

2.4 Cther Types of Constants 

is necessary to use a higher precision than that 

for real values. This means that a greater 

re necessary to provide for that higher 

sion values in FORTRAN are termed 

hey are real in the mathematical sense but 

uter store, Double precision constants 

used with 

number of 

precision 

ipits ar 

occupy me 
can take i ies thi Lnge! 

written as a string of digits optionally 
followed by the. capital letter D and an 

it integer; if not a positive value optiona ay + Es 

is assurned. 

3 Examples of double precision constants and the values they represent are: 

thematical sense: 



the real part}, a comma, 

art}, right parenthesis. 

fs may I ned, @ positive value 

es for real constants | 

omplex constants and the values they represent (js /=1) are: 

-1, 0+, 3j 

(2B~5, 5.6789) 0. 0000245. 6789) i 

(46.7, +214) 6. 720000. Oj 

"(0.6,+6.) ~6, Oj 

(2.7, 6.0) 2.7 

used in conjunction with FORTRAN logical c € 
section 2.5.8), There are two logical constants permissible 

and these represent the Boolean values true and false. They are written: 

«TRUE.. 

i.e, the narne of the value preceded and followed by a decimal point 

2.4.4 Hollerith Constants 

‘A Hollerith constant represents a string of characters which rnay include 

any characters having representation in the 900 Series internal character 

code, with the exception of newline (see Chapter 1). For standard FORTRAN 

compatibility, only those characters in the standard FORTRAN character 

. set should be used..- 

Hollerith constants are written in the form, unsigned integer positive}, 

capital letter H and a string of characters, The number of characters in 

a string, counting spaces (blanks) as significant, must be equal to the — 

integer value before the character H. “ 

Examples of Hollerith constants are: 

Hx: 

28H THIS IS A HOLLERITH CONSTANT . 

14412309 (=), +END/ 

The only positions in which a Hollerith constant may appear ina FORTRAN 

program are: - 



a) In the argument list of a CALL statement, 

b). In a DATA INITIALISATION statement. 

NOTE: Although a Hollerith string may appear ina FORMAT statement, 

in the same form as a Hollerith constant, in this use it is not 

strictly a Hollerith constant, . 

Hollerith constants are represented in the 900 Series store by 6«bit 

characters in 900 Series internal code. They are packed 3 to an 18+bit 

word and ieft justified; i.e. the first character is in the most significant 

bits of a word and zeros (spaces) are used to pad any remaining bits of 

the word, 

The maximum number of characters that can be stored ina variable by 

a DATA statement containing a Hollerith constant will depend on the type 

of variable: : 

One word integers 3 characters 

Two word integers 6 characters . 

Real variables : : 6 characters 

Double precision variables 1Z characters 

Complex variables . 12 characters 

NOTE: Programmers must be careful when transferring programs 

containing Hollerith constants between different types of 

machine. Programmers are advised not to use Hollerith 

constants unless they are essential to their program. The 

inexperienced FORTRAN programmer should avoid their use 

altogether. 

(2.5 Variables 

2.5.1 Definition 

'Variable' is the term given to the identifier of a value and the location in 

which that value is stored. This value may change according to the use 

of a variable in either: 

a) A specifie program or subprogram, or ~ 

b) - <A number of programs, subprograms to which it is COMMON 

(see Section 4.2) 

The location in which this value is held can be similarly either: 

a) Unique to a specific program, sub-program, or 

b)} Common to a number of. programs, subeprograms. 

Page 17 



Variables (including subseripted variables) can be of the following types: 

Integer 

Real 
f 

Double precision 
i 

Complex 

Logical 

i 
For/many programs only integer and real variables need be used. The 

inexperienced FORTRAN programmer is advised to leave the consideration 
iP ny ag . 

of ther types until the language is thoroughly understood. 

2.5,2. Uses of Variables 

a) As common variables - ° When COMMON to a number of 

. programs, sub-programs, In this 

instance their identifiers will be 
‘declared ina COMMON statement 

within a FORTRAN program. 

b)- As local variables - When used ina specific FORTRAN 
program or sub~program., 

c) As formal parameters - When specified in the argument list of 

a FORTRAN 'FUNCTION' or 

"SUBROUTINE! statement; the variable 

is regarded as a formal parameter 

(argument) within that function or 
subroutine. 

In any of the above uses the variable name may be subscripted if its identifier 

has been declared as an array name by means of a specification statement 

(see Chapter 4). : 

2.5.3 Identifiers 

An identifier is a name given by the programmer to an entity within a 

FORTRAN program. An identifier may be the name of: 

A variable 

An array (see Chapter 4) 

A FUNCTION or SUBROUTINE program unit (see Chapter 6) 

A COMMON block (see Chapter 4). 

Within a unit of FORTRAN program an identifier can be used to name one 

entity of one of the types Hsted. 

i Page 18 



If an identifier is not explicitly declared to be one of the types stated, it 

is assumed by the compiler to be a real or integer variable (An identifier 

is explicitly declared by writing it ina SPECIFICATION, FUNCTION, or 

SUBROUTINE statement). . 

An identifier must conform to the following rules: 

a) it must be a string of letters or letters and digits (not including 

spaces), the first character of which must always be a letter. 

b) It may contain from.one to six characters, but must not exceed six 

characters 

c) If the first character of an identifier is Q, the second character 

must be U, unless it is an identifier defined ina standard software 

manual, Strictly this rule only applies to the names of COMMON 

blocks, SUBROUTINES and FUNCTIONS, and to identifiers of the 

general form Qn, where nis aset of digits. This rule prevents 

confusion with machine code and software global identifiers. 

a) If the identifier is the name of an integer variable, array, or 

FUNCTION, it must commence with one of the letters: 

I,J,K,L,M, or N 

an exception to this rule is the identifier included ina TYPE 

statement (sce Chapter 4). : 

e) For real variables, arrays and FUNCTIONS, the first letter of an 

identifier can (with the exception of identifiers included in TYPE 
staternents) be any letter other than: 

LJ,K,L,M, or N, 

entifier occurring in aFORTRAN program unit which does not appear 

a specification statement (see Chapter 4), or as a SUBROUTINE or 

NCTION name, is assumed to be a real or integer variable of the type 

implied by the first letter. 

rules for identifiers must be observed at all times; of particular 

importance is the distinguishing between real and integer variable 

identifiers. In some instancesa violation of these rules will cause the FORTRAN 

cornpiler to. output an error message} but as all errors cannot be covered, 

the re possibils ty of a program giving incorrect results is present. For this 

son many programmers will consider it advisable to explicitly declare 

1 identifiers by means of Type statements. (U se of a Type statement 

ray override the implicit type given by the first letter, see Chapter 4). g 
Eg
 

From the preceding paragraphs the need for accuracy in assigning 

identifiers is evident and this reed cannot be over stressed. 

Page 19° 



| Examples of acceptable integer variable identifiers are: 

: r 

KLM 
MATRIX 
L123 

Examples of incorrect integer variable identifiers are: 

ABC (incorrect first letter unless an explicitly declared integer) 

5h (does not begin with a letter) . 

GI78 (incorrect éharacter viz. dollar sign) 

; ' INTEGER (too many characters) 

334.5 (incorrect character viz. decimal point) 

i JOB-STEP (incorrect character viz. hyphen, and too many characters) 

. Examples of acceptable real variable identifiers are: 

= AVAR 

: FRONT 

- F009 

QUIZ 

Examples of incorrect real identifiers are: 

QA1234 (letter following Q not U) 

SERVICE (too many characters) 

8BOX first character not a letter) 

*BCD (invalid character viz. asterisk) 

KLI1 (invalid first character unless explicitly declared real) 

: AtB (invalid character viz. +) 

2.5.4 Integer or Fixed point Variables 

hese may take any integer value (including zero) in the range: 

131072 ZvalueS 131071 o 

i If this range is exceeded, overflow occurs; however this error is not 

detected, except on real to integer conversion, 

Integér variables occupy one 18-bit word in the 905 store, However, the 

FORTRAN standard specifies that an integer variable takes the same number 

of logical storage units as a veal variable. Therefore two words are 

reserved for each integer value, unless the option bit to select single word 

packed integers isused (see Chapter 9). This option will save store, butmay 



jead to incompatibility in the use of COMMON and EQUIVALENCE 
statements when running FORTRAN progr am on computers other than 

905 Series 18-bit machines. 

When the two word option is used, the first word contains the value, the 

second will (unless used for a Hollerith constant} be spare. 

If is important that all units of a program be com piled with either the 

one or two word option applied. A check is made by the leader that this 

is sc; if not, at load time an error message will be output. If the pro- 

gram does not contain integer or logical arrays, this check will not be 

performed. . : 

245.5 Real Variables 

These are held in store in floating point form; i.e, a fraction times a : 

_ power of 2, They must be in the range? 

-26 3gvalueg 263 

aa : i.e. approxim rately: 

~9xicl 8s valued 9X10 18 

If this range is exceeded at run time, exponent overflow error is reported. 

On continuation, the value is assumed to be the largest possible magnitude 

number (of the correct sign). 

Real numbers are held te an accuracy of approximately 8 decimal digits: 

(28 binary bits). 

If the magnitude of a real variable becomes less than 2784 (i079 approx. }, 

its value is automatically set equal to zero. This action is not reported as 

anerror.. 

_ 2.5. 6 . Double Precision Variables 

These variables are used to represent real numbers to a finer degree of © 

ised for real variables. A wider range of values “approximation thant 

is also allowed. 

— They are held in the stere in three word form. For compatibility with 

standard FORTRAN, double precision arrays use four words of store 

per element, . 

The range of values allowed is approximately: oy 

-10309Z vatue L Z 419200 

fu
 If this range is exceeded at run time, an exponent overflow error is i 

output. The numbers are held to an accuracy of 10 decimal digits (35 : 

binary bits). 7 - ; . i 

a “— oO ; oo Page 21



2.5.7 Complex Variables -- 

If at run time the absolute magnitude of a double pr 

less than 107300 approximately, the value is set aut 

This action is not reported as an error. 

These are stored in the form of a pair of real values. The first value 

yepresents the real part of the cornplex number, the second part the 

imaginary part. : 

In 905 FORTRAN, complex var iables occupy four store locations. The 

limits and accuracy of real variables (see Section 2.5.5) apply to each 
part of the complex variable. 

2.5.8. Logical Variables 

These variables may take two values only: TRUE or FALSE. Int 905 

FORTRAN, they normally occupy two words of store, but occupy only 

one word if the one word (packed) integer option is used. 

They may be used in logical assignment statements and logical IF 

statements (see Section 3.4). 

2.5.9 Arrays (Subscripted Variables) 

Variables in FORTRAN can be grouped into sequential sets in the form 

of one, two, or three dimensional arrays of data. A one dimensional 

array is sometimes termed'avector', a two dime onal array may 

represent a Matrix. The use of arrays enables large quantities of data 

to be handled efficiently. - 

In mathematical notation it is permissible to write: 

X1,%2,X3,X4----.--20- Xy 

and in FORTRAN to write: 

X(1), X(2), X(3), X(4),..----4. .K(N) also: 

LE oO ES 

My, ME 2 MU, Bee eee sees mij hence, FORTRAN gives: 

M(1,1), M(1.2),MQ, 3),--.----- 000s .-M(1,J) 

M(I; 1), M(L, 2), M(i, 3). ee eee eee eee MGT 

The name of an array is an identifier formed according to the rules 

stated for ordinary variables. It must be explicitly declared as the name 

of an array by a DIMENSION statement or by dimension information in 

‘another specification statement (see Chapter 4), 

Page 22 



In the examples given previously, subscripts 1,2,3 etc. are integer 

constants and M,land J are integer variables. All allowable forms of 

subscript are listed as follows: . , 

FORM EXAMPLE OF SUBSCRIPTED VARIABLE 

k X(16) . , 

“ro VARRAY (INDEX) 

kee IARRAY(24IN) , 

wd 2(I+2) 

tL ae Z2(KAPPA«100) 

ket 2 A(1O#N+5) 

ket . " A(2#IN-1) 

Where: 

k and ? represent any positive integer constants 

Imay be replaced by any integer variable. 

NOTE: No other subscript forms are permissible. As indicated in the 

- examples given, each subscript of a two or three dimensional 

array must be separated by a comma, Viz. 

X(L,9,5) 

MATRIX G*#KAPPA-1, 2*J+41) 

If declared as an array of the correct explicit/ implicit type, any of the 

variable types, integer, real, double precision, complex and logical may 

be used as a subscripted variable. 

The value of any subscript, eithér a constant or an expression, must be 

positive, greater than zero, and must not exceed the maximum value for 

that subscript in the specification statement by which it was declared. The 

number of subscripts ofa subscripted variable must correspond with the 

number in its deciaration (use in an EQUIVALENCE statement excepted), 

2.5.10 Storage of Arrays 

The elements of arrays with more than one subscript are stored with the 

first element being the value which most frequently changes when counting 

the elements in sequence. For example, if the elements of a iwo sub- 

scripted array represent rows and columns, the rows element will be 

stored first as it will change more frequently than the column ‘element. 

Viz. 

Rl. Cl A(1, 1) 

R2 C2 A(2,1) 

R3 G1 A(3,1) 

Page 23 



R4 386  A(4,1) 

R5 ‘Cl A(5, 1) 

RI C2 A(1, 2) 

R2 cz A(2, 2) 

R3 C2 A(3,2) 

R4 C2. Afl4,2) 

R5 C2 A(S5,2) 

etc. 

In precise form, the storage of the array clements of two o 

ensional arrays correspond to storage of an equivalent one dirnensional 

array as follows: 

For a two dimensional array A lim,lin element i,j corre rndgs to the 

element itm(j-1) 

For a three dimensional array A 1: £, lim,lin elements i,j,k correspond 

to element itfG-1L)tim(kel) 

Examples of arrays are: 

a) Elements of Real Arrays: 

A(}) 

DOG(3, 7ITEM~5000, 2*MEAN#} 9) 

b) Elements of Integer Arrays: 

LIST(44JULIET) 

JIG(2*1 9, 4° +100) 

An array comprising three rows and three columns could be shown 

initially in mathematical notation thus: 

ai,1 41,2 21,3 

42,1 B22. 22,3 

a3, 23,2 43,3 

FORTRAN subscript notation of this array would be written thus: 

A(i, 1), A(1, 2), A(1, 3), A(2, 1), A(Z, 2), AlZ, 3). eee ete. 



The identifier for subscripted variables is subject to the rules stated for 

non-subscripted variables (section 2.5). 

2.6 ~ Expressions 

2.6.1 General 

A FORTRAN expression is a rule for computing a numerical value. In 

many instances an expression consists of a single constant, a single 

variable, a single function reference, Two or more of these elements 

may be combined (using operation symbols and delimiters) to build more 

complex expressions. 

Each operation is represented by a unique symbol thus: 

+ indicating positive or addition 

Ly indicating negative or negation 

EY * indicating multiplication (used instead of the character % to avoid. 

confusion with the letter X) ; : 

/ indicating division os 

** indicating exponentiation (i.e, raising to a power). 

The delimiters used are as follows: 

( } which enclose subscripts or parameter lists, and modify the order of ? 
evaluation cf the terras within an expression, 

Zspacey Only used within an expression to clarify reading of an expression, 

but ignored by the compiler. : 

NOTE: Parentheses may be used to group expressions in the sare 

: manner to that in mathematical notations, Thus (X+¥)" must be 

written (X+Y)**3 in order to convey the correct meaniz An 

expression as ambiguous as: . 

| Be , A must be written as A**(B**C) or (A 
' yvequirement intenled, 

*C according to the 

2.6.2 Order of Evaluation 

The current values of the variables within the expression are first 

determined. This may necessitate the evaluation of subscripts or functions 

before evaluation of the main expression can commence, 

When the order of operators within an expression cannot be defined clearly 

by the use of parentheses, the order of evaluation (of other permitted 

operators) is as follows: | 

a) Exponentiations 

b) Multiplications and divisions 

c) Additions and subtractions . . ve 

5 age 25 



Thus, the two expressions which follow have equivalent mathematical 

meanings! 

a) A*B4C/D+E*#F 

») (A*B)+(C/D)-(E**F) 

Within a sequence of consecutive multiplications and/or divisions or 

additions and/or subtractions, in which the order of evaluation is not 

clearly defined by parentheses, the meaning is evaluated from t to 

right. Thus the expression A/B*C would mean (A divided by B) times C 

and not A (divided by B times C} and I-J+K would mean (I minus J) plus K 

and not I minus (J plus K). : : 

Subeexpressions with parentheses are evaluated in the same manner but 

not necessarily in the same sequence ag subscripts or functions; the 

value thus attained is used to assist in the evaluation of the main expression, 

The effect of division extends only to the next element, for example: 

A/B*C is equivalent to (A/B)*C or A*C/B - 

A/B/C is equivalent to A/{B*C)- 

The incorrect order of evaluation of an expression can result ina loss of 

significance or even in a failure to obtain an answer. E.g. In the 

expression : A*B/C if the values of A,B, and © were approximately 1030, 

the result of the multiplication would be 106° and this result is outside 

the permitted range for values of real variables. However, after division 

the result returns within the permitted range. If the computer cannot 

epresent an intermediate result (e.g. 1060), the outcome of the evaluation 

will depend on the mode 6f working (i/e. Integer or Floating Point}. The 

cutcome in integer working is for the evaluation te continue and this results 

in an erroneous answer, The outcome in floating point working is for the 

evaluation to stop; an error message is output and continuation of the 

program is left to the discretion of the operator. 

2.663 Treatment of Integer and Real Vaiuea 

The evaluation of an expression containing integer and real values is 

achieved by initially converting the integer values or integer subseexpressions 

into real values. 

2.6.4 Resultg of Integer Division 

The result of an integer division is always an integer truncated so that 

the fractional part of the exact answer is omitted. Hence, 

7/4 gives the result 1(not 2) 

«5/3 gives the result ~1 (not-2) 

‘ . . — Page 26 



These results mean that the remainder of an integer division can be 
easily found, However, these results sometimes produce unexpected 
effects, €.g. 

5/3%6 gives a result of 6 

5/(3%6) gives a result of 0 

5*(6/3) gives a result of 10 

L 2.6.5  Exponentiation Results 

Am integer, real, double precision or complex number raised to an integer 
power always gives a result of the same type; i.e, integer, real, double 
precision or complex respectively. 

NOTE: This means that the expression P**J (where J is negative) will 
always give a result of zero due to the truncation rule, 

A real or double precision value may be raised to a real or double precision 
power, The result is double precision unless both values are real. 

vom Combinations of exponentiation other than those listed in the table (Section 
3,3) are not permitted, 

Attempts to exponentiate zero by zero and a negative real number by a 
negative real power will give rise to an error at run time, 

ms, 2.6.5. Types of Allowable Expressiong 

The rules for the mixing of types of expressions are given in Chapter 3. 

— Jt should be noted that a sub-expression of one type can usually be converted 

. into another type by the use of the functions: 

IPIX FLOAT DBLE SNGLE REAL AIMAG 

* oF Page 27 & 28 



3.1 Format 

A FORTRAN program consists of a sequence of statements. These 

statements can be divided into two types: 

a) Executable statements, which are obeyed when the program is 

run, 

b) Non-executable statements which further define the meaning 

These statements may be divided into of executable sta 

four types: 

(ii) Those which further define run-time operations, 
e.g. FORMAT statements. 

ation during both compilation (iti) Those which provide informatio 

NSION statements. and at run-time, e.g. DP 

3
 

(iv) Those which contain information which ease reading of 
programs, but have no actual effect on the compilation 

or running, i.e. Comments, 

ae 3.2 . Avithmetic Assignment Statements 

To enable a new value of a variable to bec omen an arithmetic assignment 

statement is necessary. The statement takes the form: 

without a sign ard, 

metic Assia x 0571 i rn order to FORTRAN to compute 

the value of the expression o ht and to give that value to the 

variable named lt is assigned to an integer Las
 

variable, then: 

- a) - it is rouhded towards zero 

b} 

snt statement is not used as 

niissible to write a 

The equals sign wit! 

in normal mathernat! x 

statement Z-RH LPHA+BET 

whilst the other values are known 

assignment statentest is one ! 

b pe 

vaiue of Z is unknown 

72.1 form of arithmetic 

Page 29 



integer ¢ 

rerted into 

ed. 

of restrictions on arithmetic modes, 

multiply and divide, an a) With the basic operations add, 
eler are 

or a real element may be c 
another element of the same type, 

bined with a double precision or 

complex clement, 

b) The validity o 
type of bb. The ways real. Ifb is ft i 

an integer var ° pression, the operation is 

adbareée zero. In ail other ances, the valid unless both a an 

result is that obtained b rultiplying 

(if b is negative} L ibis a rea} variable, 

consta is only valid ifais 

positive. The result (where it exists} has the value exp (b*loge(a)). 

itself | bj imes and 

c) An integer, real or double precision value may be assigned to an 

integer, real, or double precision element in an arithmetic 

assignment statement. A cornplex value may be assigned toa 

complex element only. 

a) A relational operator can combine two expressions of each of the 

following types: 

(i) Integer 

Real 

(ii Double precision 

: (iv) Real with double precision 

NOTE: 905 FORTRAN provides a wider range of mixed modes with basic 

operations of add, subtract, multiply and divide in that an integer 

‘element may be combined with a real or double precision element. 

Incorrect use of this facility may result in an object program 

which is-appreciably less efficient than it might otherwise have 

been. : 

a 7 “7s Page 30 



A relational expression is one that compares integer, real or double 

precision values by using the relational operators: 

-LT. 

. LE. 
EQ. 

-NE. 

-GT. 

.GE, 

The table which follows indicates the only permissible combinations (where: 

R=Real, IsInteger, D=Double precision and C=Complex). 

Add, Subtract, Multiply, Divide Exponentiation 

Fo 
1 ireioic A. r{Ripdic 

r {fz x! D*| x] I r |x |x fix 

R jR#{R | Dp [c R Rir{[pDi{ix 

pd jpxj}p |p |x D pip |pix 

G Ix lo |x ic Cc cix |x |{x 

Assignment : : Relational 

vex |i [R | D [c 1 ;R |oic 

I VW oly rf x I Yo ive [fe 7X 

Ro oVod¢ d x R ely jf |x 

D VW Iv J x D JoiJg i x 

c ix [x |x | /¥ Cc x fx [x |x 

(The entries in the MATRIX show the result type: and X indicates when a 

combination is not permitted; Jf indicates that combination is permitted) 

J with * indicates that this combination is an extension to ASA Fortran. 

3.4 Gontrol Statements 

Control statements are used when a break is required in the order in which . 

executable statements of a program are to be obeyed. A breakdown of the 

elements available for making transfers of control in the FORTRAN. language 

follow. - ~ 

. t i 
2.4.1 Statement Numbers or Labele 

A statement number is an unsigned positive integer, which is prefixed to 

a statement. The number can consist of from 1 to 5 (maximum) digits and 

is coded in columns 1 to 5 of the coding sheet. Statement numbers may 

run in random order throughout a program, but no two statements in 



thors a program unit ra 

are used to provide for ince 

identity to the numbered s 

references, 

3.4.2 GOTO Statemen 
i 

j 

statement othe 

after a GOTO stat 
never be executed. 

There are 3 types of: GOTO statments 

are: 

i) The unconditional GOTO stat 

2) The computed GOTO statement ; 
- ry 

3) | The assigned GOTO statement 

3.4.3 Unconditional GOTO Statement 

Unconditional GOTO Statements are written in the form: 

GOTO n 

where n is the statement number of the next staternent to be executed. 

Contrel is transferred unconditionally. 

Example: 

GOTO 15 

ISGOTO 8 ~~ © : 

3.4.4. Computed GOTO Statement 

switch based A computed GOTO statement provides the user with a neway 
fermi 

on the value of an integer variable, The statement has the fo 

GOTO (mys Myeees eres essa Mm) i 

where nj.n7,ng,n4..--,Np, are m statement numbers (which need not all 

be different) and iis a un-subscripted integer variable which, whenever 

‘the statement is obeyed, must have a value inthe range 1 tom, 

: Oy . Page 32 



Example: 

GOTO (4, 600, 13,9, 5260)IAC 

If the value of [AC is 1 then control would be transferred to statement 
4, i IAC had the value 2 control would be transferred to statement 600 and 
soon. If the value of the integer variable lies outside the range, at run 

‘thme an error is reported. 

3.4.5 Assignment Statement and Assigned GOTO 

The combination of the GOTO Assignment statement and the Assigned GOTO 

gives an alternative to the computed GOTO. A statement label (number) 
is associated with an integer variable by means of a GOTO Assignment. 

At some point later in the program this may be used in an Assigned GOTO 

statement to branch to that numbered statement. In programming terms, 

it is a means of presetting a switch. 

A GOTO Assignment takes the form: 

ASSIGN K TOi 

where K is a staternent label of an executable statement in the current 

program unit, 
‘ 

j represents any integer variable. 

Once the Assignment statement has been obeyed, integer i must not be 

referenced or changed until an assigned GOTO is obeyed. That assigned 

GOTO will cause control to be transferred to the statement numbered K. 

The form of an assigned GOTO is . ‘ . 

GOTO i, (Ky, Kz, K3,--+++-5 Kn) 

where iis an integer variable that must have been previously set by a 

GOTO assignment. Kj.....Ky represents statement numbers (one of 

which must be the label number K used in the ASSIGN statement). 
| 
{ 

: Note ‘that the value set in iis not meaningful, in particular it is not the 

numerical value of K. 

The ASSIGN statement and its associated GOTO statement must be in the 

same program unit. 

Example: ; 

ASSIGN 99 TO JJ 

GOTO 10 

99 XHZ+Y 

10 GOTO JJ, (97, 98, 99, 100) 



p
o
 

The equivalent comput 

J2=3 

> GOTO 16 

99 XHZ+¥ 

10 GOTO (97, 98, 99 ,105}, 32 

In 905 FORTRA 

to ensure th i 

of control, 

time, thanac 

3.4.6 

An Arithmetic IF Statement has the 

‘IF(c) Hy: AgeM3 

where (e) is an arithmetic express 

numbers (nct necessari ira 

Nj, g, or nz according to the sign of the value of (e). 

sign of e ; . 

NEGATIVE + nj 

ZERO ng 

POSITIVE n3 

Example: 

53 Ue (NX~2) 150, 151, 999 a 

3.4.7 The Logical IF Statement end Logical Stater: 

A logical IF statement is written in the form: 

IF (e}S 

where (e) is 2 logical expression and S is any 

except an IF or DO statement. The simplest form of 

is one that asks a question about two arithmetic expre 

The course of actiontakenby the logical IF staternent is as 

lf the logical expression is true statement S is executed: 

If the logical expression is false, statement 

statement executed is the one following 

and the expression was true. 

The power of the logical IF statement can be heightened by the inclusion of 

logical operators these are written in the form: 

AND. 
. ‘ 
-OR, 

~NOT, 

A logical expression cormbines logical values and/or relational expressions. 

A relational expression is one that compares integer, real, or double 

precision values by using relational operators, 

i Page 34 



Relational operators are written in the form: 

Relational 

Operators Meaning 

.LT. - Less than 

..LE. _ Less than or equal to 

- EQ. . Equal to ; . 

NE, : Note equal to” 

.GT. . Greater than 

GE, : Greater than or equal to 

A logical assignrnent statement is written in the form: 

Logical variable = logical expression 

If L1, L2 and L3 are logical variables, the logical assignment statements 

written: . 

Ll = D.LT. EPS.OR.ITER.GT. 20 

L2 = D.GE.EPS.AND.ITER.LE.20 

L3. = BIG.GT.TOLER.OR.SWITCH 

would assign L1] the value . TRUE, if either or both of the relations were. 

true, and. FALSE. if both the relations were false. 

L2 would be given the value . TRUE. if and only if both the relations were 

true, . : 

L3 would be given the value . TRUE. if the relation was satisfied and/or 

the logical variable SWITCH was true, : 

The logical operator .NOT. reverses the truth value of the expression in 

which it is declared. , . 

The .AND., .NOT, and .OR., .NOT. combinations are the only ones in 

which two operators may be declared adjacent to one another. 

An example of usage of the IF statement follows. The arithmetic preblem: 

is y = 0.5X+0.75 | if X¥3 

Hy} y = 0.2°X40,12 if X>3 

can be accomplished by combining two IF statements thus: - 

IF(X. LE. 3)¥=0. 5X40. 75 

IF(XLGT. 3)¥=0. 25*X+0. 12 

Jf X is less than or equal to (.LE.)3, the statement Y=0.5*K+10.75 will 
h be executed which is the correct formulae for computing y in th 

if X is greater than (.GE.) 3 the first IF statement is non-execuind, but 

the second If statement is. 

: : Page 35 



3.4.8 CONTINUE Statement - 

A CONTINUE staternent is a dummy (executable) statement that causes n 

action when the object program is executed. It is mainly ased at the end 

of a DO statement to satisfy the rule that the last stateme 

of a DO statement must not be one that can cause transfer of control, 

° 

nt in the range 

~ 3.4.9 DO Statement 

This statement makes it possible te execute a section of a program ré- 

on peatediy with automatic changes in the value of an integer variable 

between repetitions. It is written in either of the forms: 

DO ni = mj), M9 

DO ni = m}, m2, m3 

_ where n= statement number of the last stateznent to be i 

obeyed before attempting to repeat the loop with 

a new valve of i. 

unsubscripted integer variable written without ro
y u 

a sign. 

m, = the value to be assumed by i the first time the DO 

loop is traversed. 

mz = must be greater than my, and is the greatest value which 

_imay assume (It need not be attained nor, if m3 51, 

need it be attainable). 

m3 = is the constant interval of the arithmetic progression cf 

values assumed by i (must be? 0). 

If this value is ommitted, the value 1 is assumed. 

‘m3’is added to i at the end of each traverse of the DO loop. If the new 

value of iisg€ mp, the loop is traversed again, otherwise the loop is 

terminated and the next executable statement is obeyed. 

mj, mg and m3 may be unsubscripted integer variables or integer 

constants, 

When the DO loop is left (because if i were again incremented it would 

exceed m>) the value of iis undefined. However, if the DO loop is left 

by means of a GOTO statement then the value of i is preserved. 

The values of i, m> and m3 may not be altered within a DO loop. But for 

one exception a GOTO statement may not causé a jump into a DO loop 

that by-passes its initial DO statement. The exception is when the DO 

- loop is itself left by a GOTO and the values of i, m2 m3 have not been 

altered; since, a GOTO statement may be used to re-enter the DO loops. 

DO loops must have the following properties:



(3) The first statement must bean executable statement. 

(34) They may occur within DO loops. 

(iii) They may not intersect each other. 

(iv) Lerminating statement of a DO loop must not bea GOTS 

statement (including IF statement) nor a RETURN, STOP, 

~ PAUSE or DO statement. When this situation is required 

. a CONTINUE staternent should be used. 7: 

The following is an example of correctly nested DO loops 

ul ro
 

be
t oO
 po 3071 

po 3077 = 1, 30, 1 

DO 314 INDEX = 5, 15 

A(LJ) =A U2) - B UNDEX) . : | 

DO 330 INDEX = -10, 0, 3 

DO 329K=LLB, 12 - 

Ip (BUNDEX+10)) 345, 329, 345 

5 ta
d 

nN
 

Ne
y be
 A (INDEX+10,K) = 0 

w
w
 

co
e)

 

fas
) . 

) Zz ) 3 z a re 

_ GOTO 307 

345 | GeGtl 
i 

. 

GOTO 329 

307 ONTINUE . . 

3.4,160 PAUSE Statement 

erent thatcauses the computer to wait until the operator 

‘lation is to continue, The programmer should usually 

ment which causes a messagé to be displayed informing 

ome special action to be taken (e.g. load next data tape). 

ny be followed by up to 5 octal digits. These will be displayed 

ker, 

_—_ i . L. Page 37 



iputer to abandon the z executable 

e continued, but it may 

lat the beginning with a 

mis STOP will cause the 

current 

Informs the compiler that it has reached the 

physical end of the program or sub-program that it is currently 

4 

| 
3.4.13 RETURN Statement 

An executable statement which may only occur in a sub-program, indicates 

at the sub-prograrn has completed calculation; and so control is te be 

turned to the program or sub-program which called it (i.e. at the 

tatement following its call). 
re 



INTS (GHAPTER 4: SPECIFICATION AND DATA STATE 

Five types of specification statements are permissible in 905 FORTRAN. 

They are: . 

a) DIMENSIONS statements - 

_ b) COMMON statements 

*  ¢} _ EQUIVALENCE statements 

da) EXTERNAL statements 

ms 2) The various ‘Type! statements, i.e. INTEGER, REAL, DOUBLE 

PRECISION, COMPLEX and LOGICAL. 

ntg are also considered.in this chapter. 

statements are said tO be 'non-executable' i.e. 

tion of instructions in the program to be run. 

to indicate that one or more identifiers 

ted variables). The statement is of the 
A DIMENSION 

€ yame are tt 

form: 

a) that v is a one dimension 

a 
be referred to asi 

b} z, indicating that v isa 

~ ts which may be referred 

pte eee - v(eq, co). 

: ¢) 
indicating that Visa 

} 
elements which may be 

inforrnation tc the FORTRAN compiler and do not directly 



if, and only ii v is the name of an express formal parameter of a sub- 

{ . 7, i can include the names of one, two or three 

6 yy
 

a te Bed
 

os
 

be
 

oO
 

=
 

os
 

w ms
 

un
 ), CAT(99) 

DIMENSION AG), B(5,5),C(, 5) 

could only occur ina sub-program which numbered B,C,land J 

formal parameters. See Section 4.6 for further examples of 

{ON Statements 

lt has been stated that each pregram unit has its own variable names} 

ihe name X in the main program is not necessarily taken to be the same as 

the name X ina subsprogram. Howevér, if it is necessary for the values 

of both X's to be the same, a COMMON statement (written in both the main- 

and-sub-program) can be used. 

A COMMON statement is used,in general, to communicate data between 

program units (main programs, SUBROUTINES and FUNCTION subprograms). 

Je informs the compiler that a list of variables and/or arrays in one 

program unit is to Share the same block of core store as a similar list(s) 

of variables/arrays in other program units. 

A COMMON statement takes one of the following forms: 

COMMON list e.g. COMMON A,I,K, LAMBA 
or 

COMMON/x)/listy/xo/lsto/ ...... [x,/listy 
e.g. COMMON/BLOCK/B,J,X/BLOCK2/Z,KK 

This second form is described more fully in 4.2.1. The first form 

describes a block of store locations termed ‘blank! or ‘unlabelled! common. 

The compiler allocates this block of store and assigns the list of variables/ 

arrays to this block in the order they appear in the list. 

If there is another COMMON statement in the same program unit, the 

first item in that statement is allocated store following the last item in the 

previous statement. 

The list or Lists may consist of: variables of any tape, array names of 

any type, or array declarators of the form V{i). V(i) takes the same form 

and same meaning as the V(i) ina DIMENSION statement, see 4.1. 

Page 40 



It is often convenient to have the same identifiers used in the corresponding 

positions of COMMON lists in different program units. However, there is 

no feed for the names to be identical; only their order within the COMMON 
list is important. 

4.2.1 GOMMON Statement with Named COMMON 

Apart from the block known as blank common area, there may be one or 

more labelled (marned) common blocks. Tha names of such blocks are 

identifiers chosen by the programmer. In choosing the name the 

programmer must not use the name of any program unit (FORTRAN or 

MASIR) or intrinsic function; there are no other restrictions (The 

name has no implicit or explicit type, and it can even be the same name 

as a variable in the program, without having any relationship with that 
variable). The compiler uses the name of a common block only te allocate 

the block to the same core store area as common block({s) with the same 
name in other program units. 

Named {or labelled) common blocks are described by the general form of 

COMMON statement: 

COMMON/x,/listz/x2/listg/..... /xp/listy 

Example: 

COMMON/BLOCK/A, B,C, K(20}, Z(10, 10} 

Each x is the name of a common block. If 2 a name is omitted bet« Seen the 

slashes, the corresponding list describes blank common. 

Example: , 

COMMON/B1/X%, Y/ /1, 3(20} 

Jand J are in blank common. 

~~ If the blank common is the first described, the two slashes may be omitted, 

for example: : . bo, ws 

COMMON I,3(20)/B1i/X ma 

m would have exactly.the sa 

- If a named or blank common bi 
statement in a single prograr u 

in the order in which they appe 

~ the positions and total size of © 

Within one complete executabi 
block rnust not be gré i 

first unit, encountered: by the I. 

warning is printed if the sizes 

such restriction on the size of the blank cor 

not the 



written in 
i
 

iscation 

as would B i would 

establish D and 

(assuming all the fo 
statement elsewhere 

F and the : 

the lOBe 

2 ats so contain 

EQuiva \LENCE + statements are 

EQUIVALENCE (Ky): (ka)... ees kn . 

where: 

each k is a list of the form: . . 

tee aL each a is the name of a variable or an array &y»49,43>-- m 

element. 

An EQUIVALENCE statement assigns two or more variables within the 

same main program or within the same sub-program to the same storage 

location. 

If one large array is to be equivalenced to one or more small arrays 

and all are to be in COMMON, the larger array must be declared in 

COMMON and the smaller not explicitly declared in COMMON. 

An example of an EQUIVALENCE statement is given in section 4. é. 

The array element name must have only constant subscripts. It is 

possible to use a single constant subscript for an array with two or three 

dimensions e.g. 

DIMENSION A(3,4) 

EQUIVALENCE (x, A(5)) 

This would cause X to share the same store locations as element A(2, 2). 

If two variables occupying different numbers of.computer words are 

equivalenced together, the first word of each variable occupies the same 

storage location. oe ; 

a | ee ; Figo ao” 



The effect of an EQUIVALENCE statement may add a variable or an array 

to a common block. This may cause an incyease in the size of the cornmon 

block. However, an EQUIVALENCE statement must not extend a common 

block ‘backwards! i.e. alter the pogition of the first variable or elernent in 

the block. 

Examples: 

DIMENSION A(20) 

COMMON/BX/X 

EQUIVALENCE (X, A(1))} 

are valid, and would cause block BX to occupy 20 store units (i.e. 40 words), 

bat: 

EQUIVALENCE (x, A(2}) ° 

would be illegal, since X is the first location of BX, and this would put 

&(1) before X. . i 

4.4 Restrictions on Sequence of Ttemg in Equivalence Group 

In an EQUIVALENCE group (i.e. a set of parenthesised items in an 

EQUIVALENCE statement), there are two restrictions on the sequence of 

items, they are: 

1) If a group of equivalenced items includes an item in COMMON, 

that item must be the first in the group. 

2) If the same appears in more than one group, that name must 

appear at the beginning of the second and any subsequent group 

in which it appears. * 7: . . 

4.5 Restrictions on Namés in Specification Statements 

Within a single program unit, a name may occur in any or all of the 

following statements: 

DIMENSION 

COMMON 

Type statements 

The following rules are to be observed: 

1)... A’name may not occur in any of the forms of statements given 

in the previous paragraph more than once. 

2) A name may not be declared as an array (by having dimension 

inforrnation ) in more than one statement. 

3) A formal parameter (dummy argument) must not dppear ina 

COMMON or EQUIVALENCE statement. 

Page 43 



to the name 4): Jhe name of a COMMON bl 

of any sub-~program \ 

4.6 Examples of Statements 

In relation to the store map given following this paragraph the specifications 

in program CAT are: 

SUBROUTINE CAT 

DIMENSION A(5), 1(3, 2), B(2), L(3} 

COMMON A,I,J,G 

COMMON K,LL 

2 the specification sub-prograrn DOG (see map): coupled v 

SUBROUTINE DOG . 
DIMENSION TAIL(6}, L(3) 

COMMON EAR,BARK, TAIL, F,K,BK 

EQUIVALENCE (BK, L(1)) , 

this would lead to the allocation of space {in the first 22 locations of the 

COMMON area) indicated inthe map below assuming the "packed integers" 

eption was in use. : 

LOCATION VARIABLES DECLARED IN 

CAT DOG 

COMMON I AQ) EAR 

41 LK 

+2 
A(2) BARK 

+3 
44 . \ 

AGB TAIL(Q 45 (3) f Q) 

+6 } A(4) i; TAIL(2) 

+7 ; 

+8 i \ A(s) \ TAIL(3) 
+9 z 

#10 12, 1) TAIL(4) 
+11 1(2, 1) 

+12 13, 1) \, TAILA(5) 

$13 i(, 2) UJ 

Page 44 — 



LOCATION VARIABLE DECLARED IN 

~ . CAT , DOG 

+14 1(2, 2) 
415 1(3, 2) TAIL (6) 
416 “3, ii F 

+17 my : . : 

418 r G K of DOG 

+19 \ K of CAT \ EQ) 

+20 f LL BK (2) 

#21. a ~ 1) 

4.7 Use of Store Map 

Programmers using COMMON and EQUIVALENCE are advised to prepare 

a store map similar to that given in section 4.6 Effects ke the overlap 

of J and G of CAT with F and K of DOG are not erroneous, but their effect 

is unlikely to be that desired by the programmer. If used correctly, 

COMMON and EQUIVALENCE statements save space and simplify the 

calling and constraction of sub-programs. If used incorrectly, they ~ 

can cause chaos. 

4.3. Type end EXTERNAL Statement 

4.8. 1 Type Statement 

These consist of one of the declarations: | 

DOUBLE PREGISION . 

COMPLEX 

LOGICAL. 

followed by as many variable names as necessary (separated by commas). 

EGER 1,ABC,ROOTS 

MATRIX, NUMBER, X 

i ) oN Page 45 



DOUBLE PRECISION DENOM,REVA, TERM, N 

COMPLEX T.N1,N2,D1 

LOGICAL Al, A2,K 

A'type statement is used to inform the compiler that the given names are to 

be associated with variables of the appropriate type. In the case of Double 

Precision, Complex and Logical variables a Type statement must be used. 

For real and integer variables a Type statement may be used to override 

the implicit type suggested by the first letter of the identifier. 

The Type statement must precede the first use of the name in any executable 

statement in the program. In the examples, the I from the INTEGER state~- 

ment and the variable X frorn the REAL statement may be omitted since 

‘the names are identified integer and real respectively, by their first letters. 

4.8.2 © EXTERNAL Statement 

An EXTERNAL statement has the form EXTERNAL X%],X2.X%3,-...:%n 

where each X is the name of an external subroutine or function. 

905 FORTRAN permits the use of a function name as an argument ina 

sub-program call. When this occurs, it is necessary to list the function 

name in an EXTERNAL statement in the calling program,to distinguish 

between a function name and a variable name, - 

Example: 

EXTERNAL SIN, COS, SORT 
CALL SUBR (2.0,5IN, RESULT) 

WRITE (6, 129)RESULT 

129 FORMAT (16H SIN(2.0)=, F10. 6) 

CALL SUBR (2.0, COS, RESULT) 

WRITE(6, 130)RESULT 

130 FORMAT(10H COS(2.0)=,F10. 6) 

CALL SUBR(2.0,SQORT, RESULT) 

WRITE (6,131)RESULT 

131 FORMAT(1IH SQRT(2.0)=, F10.6) 

STOP 

END 

SUBROUTINE SUBR(X,F, ¥) 

Y=F(X) 

RETURN 

END 



This program contains a main (calling) program and a SUBROUTINE 
sub-program. The program contains only one executable statement viz. 

y=F(X) 

The arguments listed are X,F and Y¥ making the function F a matter of 

choice in the sub-program call. The main program calls this sub-program 
‘three times. Each time the value of X is 2.0 and the actual variable 

corresponding to Y is RESULT. The arguments corresponding to F are 

successively SIN, COS,SQRT; these three supplied function names are 

listed in an EXTERNAL statement. 

4.9 DATA Statement 

. . ~. B 
The use of the DATA statement is brought about when it becomes necessary 

to couple data (from the source program) into the object program. DATA 

statements take the form: 

DATA List/dy,do,......dp/, list/dy,d2, K*d3........- dm 

In this symbolic description a 'list' contains the names of variables to 

receive values, the d's are values and the K (if used) is an integer constant. 

Example: , , 

DATA A,B,C/14.7,62.1,1.5E-20/ 

This statement would assign the values 14.7,62.1l and 1.5 «10720 to A,B 

and C respectively. This action is performed at the compilation and not 

at the time when the object program is ex cecuted. 

The values assigned by the DATA statement are placed in storage when 

the object program is loaded and that is end of the actions required by the 

DATA statement. 

Jt is legal to redefine values of these variables but having so acted it is 

not possible to re-execute the DATA statement to put the variables back 

to their original value. 

The two statements which follow have identical meanings, choice of | 

statement is a matter of personal preference: | 

DATA A/60. 75/,B/10.0/,C/5.0 : . ; 

DATA A,B, C/60.75, 10,5.0 , ; 

Any of the constants may be preceded by a multiplier, that is an unsigned 

positive integer constant and an asterisk, If the multiplier has the: value n 

this is equivalent to writing the constant it precedes n times. - 

Example: 

DATA X,Y, Z, W/3*0.0,1.0/ 

Page 47 



This will cause X, Y and Z to have initial values of zero, and W to have a 

value 1.0. 

WNOTE: If these values are changed, they will only be reset if the 

program is reloaded into core store. 

The staternent which follows assigns the value 10.5 to all five variables: 

DATA A,B,C,D,E/5*#10.5/ 

A DATA statement maycontain Hollerith text, for example: 

DATA DOT, X, BLANK/1H., 1HX, 18/ : 

If the number of characters of text is not the same as the number of 

characters ina storage location, the characters are left justified and 

space filled. In the example given, the point would be left justified in 

DOT and the remainder of DOT filled with blanks: X would be similarly 

treated, BLANK would be filled with blanks as intended. pO 

The items in the list must not be in COMMON (blank or named), mor can 

they be formal parameters (dummy arguments), They may be subscripted 

variables with constant subscripts. 

4610 Restrictions on the Sequence of tema within a Subprogram 

In 905 FORTRAN the statements which make up a program unit must 

appear in the following sequence, . : 

h SUBROUTINE or FUNCTION (except in a main program) 

2. Specification statements 

3, DATA Statements 

4A. : Statement function definitions 

5, Executable statements, FORMAT statements and in-line 

machine code. 

6. END statement 

Page 48 



CHAPTER 5: INPUT AND OUTPUT 

To read input or write output data requires the programmer to declare 

four categories of information in the source program, They are: 

1) 

2) 

— 5.1 

Selection of input or output device, which is handled by a combinae 
tion of the staterment verb and the unit designation. 

The variables to which new input values are to be designated or 

whose values are to be sent to an output device, These are specie 

fied by the list of variables in the input or output statement. 

The order in which the values are te be transmitted, is governed 
by the order in which the variables are named in the list. 

The format in which the data appears forinput, ox is to be written 

for output. This is specified by a FORMAT statement which must 
be referenced by the input or output statement in all but afew 

‘special cases (see Sect, 5.4) 

Input and Output Statements 

Input and Output statements take the form: 

READ (u,f) k or READ (u) k 

WRITE (u, £) k or WRITE (u) k 

where u represents an integer constant or variable indicating a device 

(see table which follows). 

f represents the statement number of FORMAT statement (see 

Section 5.4). If 'f' is absent, statements are known as 
unformatted; otherwise they are known as formatted. The name 

of an array may be used in place of f (see Section 5.7). 

k represents a list of items to be input or output. The lst may 
contain variables, subscripted variables, array names and 

DO-~implied lists. 

The vaiue of u must be in the range I to 10. 

Page 49 



Value of _ a 

. u 

i Paper Tape * pe * 

2 - 7 ~ 

3 Teleprinter * 

4 - 

5 

é ~ - 

7 . Card Reader Se ‘ 

‘8 ~ ~ 

9 Display Keyboard 

10 Special Devices 

— ae 

The standard run-time package for paper 

marked * pre-set (i.e. automatically ev 
other number in the range ] to 10 is dive 

(using READ Staterment) or punch (using WRI 
numbers are to be used, the device routines ul e 

the READ or WRITE statement e.g. a call of QLPOUT 

4 for output of information to the line printer. Device numbers 

and output is reserved for special on-line devices {normally i 

the user} and will not be used for any standard hardware per 

et to device a 

5,2 The List of an Input or Output Statement. 

fundamental idea of 'scanning' carries throug 
associated with the first variable name and { 

the associated FORMAT statement}, and so on. 

However, when entire arrays or parts of array 

ig not necessary to name each element explicit 

array, it is only necessary to name the array ina list excluding any 

subscripts. The name of the array must appear cisewhere in the program 

ina specification statement that gives dimensioning information, but in 

the list it need not carry any subscripting information. The elements may 

(but need not) have the same field specification; this one field specification 

may be given by itself in the FORMAT statement. 



For example: 

DIMENSION A(10, 5) 

-WRITE (6,21)A 

21 FORMAT (1PE20. 8} 

would cause output of all 50 elements of array A, one to a-line (in IPE 20.8 

format). 

When an entire array is moved this way, the elements are transmitted in 

a sequence in which the first subscript varies the most rapidly and the last 

subscript the least rapidly. 
: 

When only some of the array elements are to be transferred or when the 

‘natural order’ just mentioned is not required, it is still possible to avoid 

naming each element explicitly. The elements can be specified instead in 
the list required in a way that parallels a DO loop. 

Example: ‘ oa : 

So Suppose the array 'BLOCK' has 90 locations, in the form of 15 rows and 

6 columns, of which only 24 of these are required for output. These 

locations are located between rows 7 and 14 and columns 2 and 4. The 

WRITE staternent could be in the form: 

DO 501=7,14 

DO 503=2,4 

50 WRITE(3, 51) BLOCKG,J) 

51 FORMAT(3I6) - 

With DO-implied lists this could be written: 

WRITE (3,51) ((BLOCK (I,J), J = 2,4), 1= 7, 14) 

51 FORMAT (316) 

In generaLa list of a READ or WRITE statement can be made up of variables, 

subscripted variables, array names and DO implied lists. If there is 

more than one item in the list they must be separated by commas. 

A DO-implied list is raude up in the general form: 

(List, 1=m),, mz, m3) 

where ] represents any integer variazle and my), M), m3 have the same 

meaning as inaDO statement (Chapter 3). 

The ‘List! may be made up of variables, subscript variables, array names 

_ and DO-implied lists; which means that DO-implied lists can be "nested", 

as shown in the previous example. The innermost DO-implied loop is 

executed most frequently. : 

Page 51 



5.3 Effect of Nur D and WRITE Liets 

Item * Effect ina READ Effect ina WRITE 
: list list 

A simple var- A number is input The value of the variable 

jable (which from the ‘in output t6 the specified 
does not occur device 

ina value is a : 

DIMENSION to the variable 
statement) e.g. 

A subscripted As for a simple As for a simple variable 

variable variable (See {see Note 1} 
e.g. B(7,5) Note 1) : 

The name ofa ‘Che appropriate The value of the elements 

DIMENSIONED | number of values is of B are output in order. 

variable read from the speci- : 

fied device and they 

are assigned, in 

order, to the elements 

of B 

NOTE: The identity of the items ina READ or WRITE statement is 
determined before the values of any item in that Hst are input 

or output. Consequently if the next two items ona data tape are 

3 and 3.14159, the effect of 

I=7 

READ(1, 1}1, AQ) 
« 

‘is to assign the value 3 to J and the value 3.14159 to A(7) (the 

value of A(3) will remain unaffected). 

5.4 FORMAT Statement 

The function of a FORMAT statement is to declare how information is to 

be arranged either on input or output. To each value transmitted there raust 

correspond a field specification which lists the kind of information and the 

layout details of the value contained in that field (in terms of its internal 

representation and what it ‘looks like! externally). 

54.1 General Forra of FORMAT Statements 

The form generally used for a FORMAT statement is the word FORMAT, 

followed by a list of @ne or more items enclosed in parenthesis, thaftis: 

FORMAT (List) 

Page 52 



In 905 FORTRAN, 'List! may consist of the single word FREE which 

indicates free format for use on input only. However, Standard FORTRAN 

does not include this facility since FORTRAN was mainly used ina card 

input environment. When data is input from cards, each item is normally 

punched in a fixed column width with a fixed number of items per card. 

Using paper tape input it may be inconvenient if the value 2.0 has to be filled 

out with 10 spaces because the number 12345678E~-5 has to.be punched ina 

corresponding data field. For similar reasons, it may be inconvenient to 

always have a fixed number of items per line of text. Therefore 905 

FORTRAN allows both fixed (standard) and free format input. 

Example: 

7 FORMA TORR ER) 

will cause the next four numbers to be read from a data tape, and assigned 

I,dJ,X, Z with the correct value type (see Section 5.9 for further details 

- frec forma at input), On output, it is both convenient and essential to 

epecify how many character positions are occupied by each item output 

and the form of output e.g. floating point or fractional , number of signifi- 

cant digits etc.. . . 

which specify the width of a field (i. e, the number cf character POS en an 

on the external mediurn), the corresponding type of internal representatio 

and other necessary information for output control. When a READ or 

WRITE corresponding toa FORMAT statement is obeyed, each 

item present (or implied) in the READ/WRITE list is matched against a 

tor in the FORMAT list by a scanning process which works 

1 lists in parallel. 

andard FORMAT statements thus consist of a set of field descriptors 

field descri 

through bot? 

i) avoid repeatedly writing identical field specifier 

(33) cater for READ/WRITE Usts whenthey are longer than the 

FORMAT statement lists. 
1 

{ 
intor impliesaconversion between a number or a group of 

~esented on an external medium, and an internal reprdseént- 

sarne item within the computer, The internal representation 

, consist of binary numbers, packed internal code characters, floating 

te.. For most purposes, the programmer only needs to be aware of 

e of internal representation available i.e. integer, eal, Hollerith 

ternal medium may be paper tape, teleprinter or any other 

s device with suitable software. | 

field ceparats rs (either commas or slashes). Field descriptors 

of the letters I,F,E,G,D,A,H,X, lL followed by either 

enetal FORMAT list is made up of field descriptors separated by 

riptar to cur ol integer conversion, . 

Page 53 

acters conveying special information. For example, using 



WRITE(1, 99)L,5 

99 FORMAT(I2, 14) 

1. . td of two 2 would cause the two integer values in Tand J 3 o ie Oo
 5 a Ee ne Fa Hy ie fa
 

and four characters respectively. 

5.4.2. - Repsat Counts 

All the descriptors except X and H may be preceded by a 2 

indicating that the descriptor is tr it: 

Example: 

Or
 is equivalent to: FORMAT (15, 15,1 ). 

a 
eses to make @ 

f), Field 
A group of field descriptors may be enclosed in parent 

basic group (The basic group may be preceded by a ¢ 

separators and basic groups may be further grouped by 

parentheses with a repeat count. The ‘nest of groups must n 

than two in depth. ‘ 

in 

Example: 

FORMAT (2(16, 3(14, 13})) 

is equivalent to: , 

FORMAT(I6, 14, 13, 14,13, 14, 13, 16,14, 13, 14, 13, 14, 13) 

5.4.3 xternal Records and Nexlines 

Apart from separating text, the separator / {slash} is also used to start a 

new record (for punched card input a record is defined as one card}. In 

general, a record on paper tape is a string of characters (text) followed 

by newline, although the FORTRAN standard does not clearly define this. 

In 905 FORTRAN, the separator / ina FORMAT statement causes on 

output a newline sequence to he punched, and on input causes cha 

to and including the next newline (linefeed) character to be ski 

of a FORMAT statement scan, when the last right parenthesis 

produces the same effect. 

aracters up 

éd, The end 

is reached, 

There may be more than one slash between field descriptors indicating 

multiple newlines, and a group of slashes may be used at the beginning cr 

end of a FORMAT statement. 

Example: . 

WRITE(3, O7)LI 

97 FORMAT( //13/14 /) OOS 



This would cause output of two newline sequences, a three character integer, 

newline and a four character integer followed by two newlines. Of the last 

two newlines one is causes by / separator, and the other by the end of the 

FORMAT scan. 

_ If inthe parx4Mel scan ofa FORMAT statement and READ/WRITE list, the 
former list ig exhausted before the latter; format ccniro] returns to the 

beginning of the FORMAT list, or ifthere are nested groups of descriptors, 

to the repeat count at the start of the group which ended most recently. In 

either case a skip to a new record or output of new line occurs. 

Example: 

WRITE(1, 999)M, (IA, KJ = 1, 2), K= 1,3) 

999 FORMAT(I6, 2( /13,14)) 

causes output of the values as follows: 

: TA(L, 1) IA(2, 1) 

-.  JA(L, 2) 1A(2,2) 
Extra newline for 

end of format. 

_ IA(1, 3) IA(2, 3) 

54:4 Field Descriptors Available 

There are nine field descriptors available in 905 FORTRAN, which are 

written in the following symbolic forms: 

sr Ew.d 

sxrF w.d 

srGw.d 

rDw.d Le)
 

x’ Iw 
ii 

x Lw 

“y Aw 

ni hy h2,h3,..-..-h, 

nk 

where: 

$ represents a scale factor in the foxvm EP whi not .. .s 

required (k is an integer constant, optionally signed). 

ten
t 

sy
 

r represents a repeat count which may be omit 

or
 

written as a positive unsigned integer constan 

w represents the width of the field on the external medi 

tt is written as an unsigned positive integer constant. 



s after the decimal point ina real or 

‘d' is an unsigned positive integer. 

characters ina Meld. 

the affect of the various number descriptors (1,F,E,D, G) on input is 

5 effects of output are desgribed under 

:eriptor (section 5.4.7 and onwards). 

written before an E,F,G or D format descriptor, in 

where j is an unsigned positive integer constant. or a signed negative integer 

4 ¢ a scaie factor has been specified, this factor will apply to 

and D field specifications which foliow(in the rest of the FORMAT 

,wunless cancelled by another scale factor. An implied 

set up when a READ or WRITE Statement commences. 

effect oni, L, A, H or X specifications. 

A non zero scale factor has different effects on input and output, On input, 

for F, E, Gand D specifications if there is an exponent in the input field, 

the scale factor is ignored. If the external input field does not contain an 

e internal number = external number divided by 107, where nis 

RCE 

exponent, 
the scale 

For the effect of scale factor on output, see the separate descriptions of 

F, E, Gand D specifications. 

5.4.6 Input-of Numbers Under Format Control, 

Nurnbers are input under format control (as opposed to free format) by the 

descriptorsI, E, F, G, D. In each case a field of w characters is input, 

that is the next w significant characters are read from the external source. ur 

Line feed (newline), carriage return, null and erase are all ignored by the 

compiler. 

For integer conversion I the external field must be in one of the forms 

permitted for integer constants @igned or unsigned). 

For real and double precision conversions (E, F, Gand D), the external 

field may be signed or unsigned, with a string of digits which may or may 

not contain a decimal point, These digits may, but need not, be followed 

by an exponent in one of the following forms: . : 

, Example of complete number. 

+ integer constant 000943 

~ integer constant 0. 000-1 

& integer constant ; . 0.009E2 . 

| signed integer constant - 90, 0-2 - ‘ 



D integer constant : . 609D02 

D signed integer constant bb90D ~2 

(No exponent). : 0. Ibbbb 

In the examples b represents space (blank). All these numbers could be 

input under control of F7.0 to give the same internal valus. 

If a decimal point occurs in the field the d value is ignored. If an exponent 

is used the number is raised to that power of ten, and any scale factor 
ignored. If there is no exponent, the internal number = external number 

divided by 108, where nis the current scale factor (zero if none specified), 

Spaces (blanks)are significant in formatted input, they are treated as 
zeros. If spaces occur at the beginning of the field they are generally 

regarded as non-significant zeros, but at the end of the field they may 

have some effect, particularly if there is no decimal point or if there is an 

exponent. 

An all blank field represents zero. 

5.4.7 Field Specification | Gateger) 

This takes the form Iw where I specifies conversion between an internal 

integer and an external decimal integer. 'w' specifies the. totai number of 

characters in the field, including any sign or blanks. : 

Examples: 

G) 9 FORMAT (16) 

READ (1,9) J 

On input this would cause 6 characters to be read from paper tape, con- 

verted to integer form and stored in variable J. 

(43) J = -987 . . 

WRITE (3,9)7 an . i 
ae j 

On output this would cau 

printer, with two spaces 

characters). 

5.4.8 Field Specification F 

2 
:Fwed,where F in The form of this specificat} cates co 

between an internal real value and an external numb 

exponent. The letter w in the 

field, including sign, decimal point and any blanks; a the number 

of decimal Llaces after the decimal point. 

For the effect of F format on input, see 

d digits to the right of the decimal poi 

zeros). - . 



The scale factar may be used with the F field specification by writing the 

specification in the form: 

sPrFw.d 

where  s= scale factor (scale factor may either be positive or negative) 

r= repetition number 

of scale factor on output is that: external number = internal 
5 ‘ 

5,4.9 Field Specification E (Floating Point) 

The form of this specification is Ew.d where E specifies conversion 

between an internal real value and an external number written with an 

exponent. The total number of characters in the external medium is w, 

including sign, decimal point, exponent. and any blanks. The number of 

decimal places after the decimal point (not counting the exponent) is | 

specified by d. ; 

Example: 

Yr 1]. 5E~2 

X = «123.4567 

WRITE(3,9) X,Y ; ae ae a 

9 FORMAT(2E13.6)  _ , pee 

This would cause output as’ follows: 

-0.123457E +03b9.150000E-0] (where b represents e a space or blank) 

If a scale factor is used on output, it causes the fractional part to be 

muitiplied by 168 and the exponent to be reduced by &. For example, if 

the previous FORMAT statement were: 

9 FORMAT (1P2E13.6) 

the output would be 

~1.234567E+02 1.500000B-~02 

Ih 905 FORTRAN the standard form without scale factor, for example: 

+ 100008403 

will sometimes be output as: 

1, 00000E102 

5.4.10 The Field Specification G{Frecepoint) 

The form of specification is Gw.d. The internal value must be of type 

real. On input, the G w.d specification is treated as for F w. d specification. 

On output, a field of width w words with d significant characters is output, 

according to the following rules: , . ° 

Page 58 



if N is the magnitude of the value to be output, the sPG w.d specification 

produces an equivalent conversion as follows: 

Magnitude Equivalent output conversion 

~ 0. LENZ 1 F(w-4).d,4X 

14n<10 F(wed), (d+1), 4% 

: 10d-2¢€n<icd-! Blwe4).1,4X 

10d-lgn < 10d F(w-4). 0, 4X 

Other values sP Ew. de , 

The scale factor has no effect unless output is in the Ew.d form. 

Example with G10.4 

123.45 output as «123. 4bbbb 
~ -12.345 output as -12.34bbbb 

1. 2345 output as «1. 234bbbb 

7 where b represents space (blank) character. 

5.4.11 Field Specification D (double precision)’ 

In the Dw.d specification, the corresponding internal value must be 

double precision. The exponent in the output field is written with D instead 

of E, but in all other respects this is analogous to the E field specification. 

5.4.12 Field Specification L{logical) - 

In the Lw form, the L specifies conversion between an internal logical 

re value (. TRUE. or . FALSE.) and one of the letters T or F externally. The 

4 _ total number of character positions is specified by w. . 
i . 

On input, the external field may contain spaces (which are optional), 

the letter T or F, followed by any other characters which would fill up the 

remaining w positions. On output, the external field consists of (w ~1) 

spaces (blanks) followed by a letter T or F. 

5.4.13 Conversion for Complex Numbers. 

A complex number is input or output as though it were two reali numbers, 

the ‘real part! followed by the ‘imaginary part’, Therefore there must 

be two real format conversions (F,E or G) in the FORMAT statement, 

corresponding to each cornplex variable or array element in the READ/WRITE 

list. Only in free format input (q.v) are complex numbers specially treated. 



5.4.14 Wield Specification A (Alphanumeric) 

In the Aw form of field specification, the associated variable may. be of 

any kind. The field specification causes w characters to be read into o¢ 

written from, the associated ‘list' element. The alphanumeric characters 

may be any symbols representable in the internal code character set, : 

including letters,digits and the character space (blank) : 

In 905 FORTRAN to every basic 'A' descriptor there must correspond one 
word in the input/output list. ‘Aw! descriptor will only transfer - 
one word (one storage unit) and at the most three characters. Hf, on input, 

wr then the first w-3 characters are ignored and the remaining 3- 
characters transferred into storage. If w43 then the rightmost (w~3) 

characters appear as blanks in storage. On output if w>3 the first 
w-3 character will be blank in the output field. 

Example J] (I, J, K = integers) 

READ (1, 10)1, 3, K 

WRITE (2, 10)1, J, K 

10... FORMAT (A2, A3, A5) 

wr ASE Gasp 
“Storage Ce MUA eo Aae de 

Io: A-b os waged. DO Ro nandie. 

Jo: FORO 7” evans covecttny 
Kor Te 

Output : A - FORbDT** 

where b represents space (blank) 

Example 2 (F=real, E=real array) . 

DIMENSION E(20) ae 

READ (1, 26) ¥F, (E(1), i=1,2) 

20. FORMAT (2A2, 443) 

22 3 3 3 3° 

where b represents space (blank) 

Storage 

¥ +. TEb 

Fil : STb 

EQ) : ING: 
BQ)\4) 2. bFO 

. . _ Page 60 



NOTE: 

Example 2 (Contintued) , a 

E(2) > RMA 

E(2}41 oo: T, * 

Example 3 (N=packéd integer array) 

DIMENSION (26) 

READ (1,30) : (N(, Ist, 2) 

WRITE (2, 30) (MQ), I=1,2) 

30 FORMAT (243) 

_READ (1, 40) - (4D, T=1, 2). 

WRITE (2, 40) (M(I), I=1, 2) 

40 FORMAT (443) 

5.4.15 Field Sps os
 

rea
t 

fas
 

+ 
3 se
 

This specification takes the form wX, where w is the field width. On outpu& 

w spaces (blanks)are inserted in the output text. On input, w characters are 

carriage return and erase are ignored on 

not associated with an item in the READ/ 

the action specified by the previous. 
N 

read and ignored (Né 
counting w . 

WRITE list, 

FORMAT des 

H,B. The letter N must owed by a comma, slash or right parenthesis. 

5.4.16 

wH, where w characters immediately 

or punched in the position indicated by 

specification in the FCRMAT statement. 

differs from the other specifications 

ihe transmission of any values from the 

t or output of the text itself. 

This spécific 

following 

the posit the 

The Hollerith Fiel 

w characters are read from the 

RMAT data replacing the w characters 
characters; newline, null, 

If the letter H is subsequently used 

If an 'H' descriptor is used on 

external medium, e 

which follow the le: ( 

carriage rX a 
for output, 

the H text, either in the original 

ing the letter H. : 

Page 61 



Example: 

8 

9 

WRITE(3, 8) 

READ (1, 9) 

WRITE 3,9) 

FORMAT (6X, 7HHEADING) 

PORMAT (20H01234567890123456789) 

This reads a heading of twénty characters from the input paper tape, and 

outputs; ‘it on the teleprinter. Such input and output may provide a more 

machine independant form than the use of the ‘A' descriptor for similar 

purposes. The last character of the Hollerith string must be followed 

5.5 

a) 

b) 

, ‘by corrima, slash or right parenthesis. 

Examples of Field Specifications . : : i 

Integer type 

To output the numbers ‘16 and -64 

i) on the same line, the FORMAT statement could be 

FORMAT (i2, 13) 
which will be output as 

16-64 

ii) on the same line but separated by three spaces use 

FORMAT (12, I6) 

which will be output as 

16 GXEXS) -64 

iii) on separate Mnes but under each other the FORMAT statement 

FORMAT (13) - 

which will output 

@16 
-64 

External fixed point 

To output the numbers -187. 654 (with two spaces before the minus 

sign, the FORMAT statement would be 

FORMAT (F10. 3) 
FORMAT (#8.5) will give -187. 65400 

FORMAT (3PF8.3} will cause a number 0.1234 giving the current 

in amperes to be printed as milliamperes; 

b123. 400 

‘Floating Point 

To output the number 497863.31, the FORMAT statement used, 

could be FORMAT (E14. 8) 
which would output; 

0.49786331 E406 



d) Logical 

If the variable is, TRUE, then the FORMAT statement: 

FORMAT (2) ; 

~ would output: 

@r | 
However, if the variable is / FALSE, the FORMAT statement 

FORMAT(L6) will output : 

@OOOOF 
Ifa FORMAT statement contains nothing but Hollerith and blank field 

specifications, there must be no variables listed in the associated input 

or output statement. This is common practice when the WRITE statement 

produces page and column headings or causes line and page spacing. 

Example: - 

The two staternents: 

WRITE (3,7) 

7 FORMAT(S5HYARDS, 8X, 4HPEET, 8X, 6HIB CHES) 

will output: 

YARDS@Y BYOXEKEYOQEX FEET OCSHHOOO INCHES 

5.6 Number Out of Range on Output - 

If the character field (w) is not wide enough to contain the output value 

an asterisk is inserted in the high order position of the field. If the 

exponent is also printed, its absolute value must be less than 99, otherwise 

net! peplaces the exponent part in the output. . 

Examples: 

Format Value Outpet 

7 F6.2 3456.7 56.70 

F6:2 234.56 234.56 

F6.2 -234. 56 “£34.56 i 

F6.0 123.0 ° “pbi23. } 

F6.6 123 *23000 

F6.7 1,834 " "34000 

¥6.4 0.123 0.1230 

F6.5 0.123 . 12306 : 

D10.3 312.4E4+100 o.124psex |) 

where b represents space (plank) 

‘ 

its
 3 i ea
 

g
s
 Ww
 



With E-format, the standard form which is 

+ O.x,X9- --¥n E+ ¥iy2 

= 0 

5.7 Run-time FORMAT Statement Input 

The ability to read 2 FORMAT statement at the time of execution of the 

object program adds great flexibility to FORTRAN. In order to achieve 

this, an array must be declared which will hold the FORMAT specification 

in the form of alphanumeric data (see Field Specification A). The FORMATS 

_are read into this array at runtime. These variable FORMATS must 

reference the array by name in the READ or WRITE statement. 

Example: i 

Suppose we have three variables to output but do not at the time of writing 

the program know the form of output. A one-dimensional array PMT which 

is of a suitable gize,in this case 5 words is declared. The array is real, 

and has 10 locations in which a maximum of 30 alphanumeric characters 

may be stored. The format which is to be in the forrn: : : 

(16, 8X, F8.3, IPE20. 8}bbbbbbb 

h make up the which consists of 23 characters plus seven spaces whi 

30 alphanurneric characters. The program would be written as: 

REAL X,Y,FMT 

INTEGER I 

_ DIMENSION FMT(5) 

READ(1, 209 FMT(), I=1, 5) 

209 FORMAT(1CA3) 

WRITE(3, FMT)I,X, ¥ 

NOTE:. It should be pointed out that in the data input frorn tape, the 

enclosing parenthesis of the FORMAT must be included, but the 

word FORMAT itself should be omitted from the data tape. 

5.8 Free Format Input 

The FORMAT statement for a free-format input operation is as follows: 

FORMAT (FREE) 
The effect of a READ statement which refers to such a FORMAT is to - 

cause numbers to be read from the input paper tape, converted according 

to their appearance, and the resulting values assigned fo successive items 

Page 64 



in the READ list (the latter being interpreted according to the standard rules 

for fixed-format). The operation is terminated when the end of the list is 

reached, and is temporarily halted by the appearance of a halt code on the 

input tape. : 

When reading free-format data, the mode of conversion is deterrnined in the 

_first place by the formation of the number on the input tape The value is 

then stored in the form appropriate to the type (integer, real, etc.) of the 

itern in the READ list. 

§.8.1 Data Tapes for Free Format Input 

Integer, real, double-precision, and complex numbers may be punched on 

data tapes. They appear in the same form as constants of equivalent type 

ina source program, and each number is terminated by one or more 

spaces or line feeds. The real part of a complex number is terminated by 

',' complex part by'}'. Blank tape, carriage return, and erase are ignored; 

a halt code stops the program pending manual restart. 

Acceptable characters are: digits, decimal point, +,-,D,E,comma, 

parenthesis, subscript 10, space, tab, Line feed, carriage return, ~ 

blank tape, erase, halt code. The appearance of any other character . 

on the input tape will give rise to an error indication, . 

In a complex number, there must not be any spaces between the end of 

each number and the comma or parentheses.. 

5.8.2 Example of Free Format Input 

The statements: 

COMPLEX © 

READ (1,100}F1, F2,71,32,33,€ 

100. FORMAT (FREE) 

with input data tape: 

10.3 ° 10 ~~~ 7.6 2 5.381 (2.4, 5). 

will result in the following assignments: 

Fil = 10.3 

F2 = 10.0 
gio = 7 : 

J2 = 2 os 

J3 = 53 

Cc # 2.4 

Cte = 5.0 

. 1 ‘J By 2 o oO
 

ul
 

g n
 
N
 



CHAPTER 6: FUNCTIONS AND SUBROUTINES 

6.1 Subprograms - General 

Functions and subroutines form a means whereby a single FORTRAN 

statement may cause the cormputer to obey a section of program which 

may contain many statements. They may be used to obtain one or more 

of the following advantages: 

(a) To save the programmer writing the same long statement or 

group of statements many times at different points in his 

program. 

(b} To save core store, by avoiding the repetition of code performing 

the same or similar functions. : 

| 
{c) To divide the program into units which may be compiled 

separately. This has the advantage that if an alteration is 

necessary in one unit, it is only necessary to re-compile 

that one unit. , 

(4) — A second advantage of separate compilation is for convenience, 

especially when several programmers are sharing a task. They 

need not worry about clashes due to use of the same identifier for 

different purposes. The parameters and/or Common Blocks help, 

to provide a defined interface. . : 

(e) Once written 2 single subprogram may be used with different 

Main Programs. oy : 

6.2. Main Programs, Subprograms and Program Unite 

A complete program in the 905 FORTRAN system, with all the statements 

necessary to runit, is known as an executable program. It may consist. 

of one or more program units. , : 

Each program unit is either a Main prograrn or a subprogram written in 

either FORTRAN or 905 MASIR assembly code. There must only be one 

Main program which should be written in FORTRAN (but could be written 

in MASIR code}, A FORTRAN main program is identified by the absence 

of either a FUNCTION or SUBROUTINE statement at the beginning of the 

program; (when compiled the program unit takes on the name MAIN.) . 

A FORTRAN subprogram is either a FUNCTION subprogram or 4 

SUBROUTINE subprogram, identified by the appropriate statement as the 

first significant line of text. 

NOTE: A subroutine is sometimes referred to as a procedure. 

No program unit in 905 FORTRAN may be so large that its compiled code 

plus the local arrays and variables (i.e. not in COMMON) exceeds 

Page 67 



8100 words of computer storage. 

6.3 Types of Procedure 

In 905 FORTRAN, the following types of procedure can be used: 

(a) Statement Functions. 

(b} Intrinsic Functions. 

(c) Basic External Functions. 

(a) FUNCTION Subpfograms . 

(e) SUBROUTINE Subprograms. 

Statement functions are single statements embedded within a prograin unit, 

and are not therefore classed as subprograms (they are described in 

detail later in this section}, 

Intrinsic functions are a set of functions provided with the 905 FORTRAN 

Compiler system, and Usted in Appendix 1 Table A 1.2. Their names : 

should not be used for any other purpose. They perform commonly 

required operations such as finding the absolute magnitude of a number. 

Basic External Functions are a set of functions also supplied with the 

Compiler system. They perform useful Mathematical functions such as 

taking the square root, finding the sine etc. A number of other 

trignometric functions can be easily derived from the functions supplied, 

for example: . 

arcsin (x) = arctan (sqrt (x7) (1-x"))) 

The differences between instrinsic and externel functions are that, external 

functions may be mentioned in EXTERNAL statements and one . 

may write external functions to replace the standard functions (if 

considered necessary}. For example, the programmer may write a SQRT 

routine which took special action when a negative argument was given. 

6.4 Subprogram Head - 

- A subprogram head is declared in the form: 

FUNCTION f(m,, rrr m,) 

SUBROUTINE s(mjz,mg-.-.----- m,) 

or SUBROUTINE s 

where: 

(i) fis the name of the FUNCTION and specifies its type in accordance 

with the implicit type rules (see (vi)}. 

Page 68 



(43) s is the name of SUBROUTINE ( apart from the Q Rule ~ see 

. 2.5.3 ~ a subroutine name is not governed by set rules but, care 

- must be taken to avoid clashes of names; therefore the choice of 

s is completely arbitrary). , 

(ii) My, Mg, Mg,eee eee ...-M, are express formal parameters. 

Each m; must be the name of a variable or an array, or a 

_ procedure. There must be at least one parameter per FUNCTION 

statement but there need not be any explicit parameters for a 

SUBROUTINE. , 

(iv) Each n, which represents an array must appear ina DIMENSION 

statement within the body of the subprograrm. In this DIMENSION 

~ statement the upper bounds of its suffices may be given either as 

integer constants or as integer variables which are themselves 

express formal parameters. , 

(v) In addition to the express formal parameters, a subprogram may 

refer to variables in COMMON, these may be regarded as 

implicit parameters. 

(vi) The word FUNCTION may be preceded by one of the following: 

REAL, INTEGER, DOUBLE PRECISION, LOGICAL or COMPLEX, 

which causes the appropriate type to be associated with the 

FUNCTION name. 

6.5 The Subprogram Body 

A subprogram body is subject to special rules as in a normal FORTRAN 

main program. They are: 

(i) A subroutine does not have a value and no assignment may be made 

to its name. It may communicate information to the program that 

| called it (main program or another subprogram) by altering the 

!  “walues of one or more of its parameters. : 

(ii) Within a FUNCTION subprogram, its name ({f) acts as an ordinary 

_ variable of the appropriate type. Itis undefined on entry to the 

FUNCTION but a value must be assigned to it, before exit is made 

from the FUNCTION subprogram. : 

(443) In 905 FORTRAN, the alteration by a FUNCTION of any of its 

- parameters is not considered to be an error. However, this 

should be avoided wherever possible, particularly as the evaluation 

of a FUNCTION statement may not validly alter the value of any 

_ other elements within any expression, assignment statement or 

CALL statement in which the FUNCTION appears. ; 

Gy) A subprogram body may not itself contain a declaration ofa 

subprogram. . 



w) An explicit formal parameter may not occur ina COMMON or 

EQUIVALENCE statement (see CHAPTER 4). : 

(vi) When a subprogram has completed its computation, it returns 

egntrol to the prograra that called it by means of 4 RETURN 

statement. This comprises of the word RETURN on a new line. 

(vii) The body of a subprogram is terminated by an END statement. 

This comprises of the word END on a new line. 

626 ‘Examples of Function and Subroutine Subprograms 

| FUNCTION MAR(, 5) . 

jie (es) 1, 1, ; . 

1 MAX = 
RETURN 
MAX =1 
RETURN 

“> END 

SUBROUTINE MTXMLT (A, N, M,B,L,C) 

DIMENSION A(N, M), B(M, L), C(N, L 

C BECOMES A TIMES B 

DOlI=1,N 

poik-=i,L 

D=0.0 

. bpo2a2yjsi,M 

2 D-=D+tA (I,J) * BY, K) 

1 C(,K)=D 
RETURN 

END 

CO}
 

6.7 Calling a Subprogram 

(1) A FUNCTION subprogram is activated by writing: 

in some statement which can make use of the value of f. 

(2) A SUBROUTINE subprogram is activated by a call statement, 

which takes the form: 

CALL s(my,Mg,----+ e+e m,) 

: The FORTRAN word CALL must be terminated by at least one 

space. 

- Bage 70 



(3) If an express formal parameter (integer variable) is used as a 

subscript bound then the corresponding actual parameter must be 

an integer variable to which the correct value of the subscript 

“pound has been assigned prior te the call of the procedure. 

(4) If an express formal parameter is an array the corresponding 

actual parameter should be an array of the same type. 

: (5) If an express formal parameter is a simple variable, the 

corresponding actual pararneter must be a simple variable, array 

element, constant or expression of the same type. If an actual 

parameter is a constant or expression,then the corresponding 

~ formal parameter: 

(3} must not occur in a DIMENSION statement 

(ii) must not have a value assigned to it during 

the execution of the subprogram. 

(6) The actual parameters need not all be distinct. 

_ 6.8 Examples of Calling Subprograms 

This example is based on the example ‘of subprograms in Section 6.6. 

DIMENSION K50, A(5, 10), B(10, 20), c(5, 20) 

Cc - THE ELLIPSIS INDICATES THE ASSIGNMENT OF 

Cc VALUES TO THE ELEMENTS OF K,A AND B 

I=MAX ((1), K(2)) 
DO 1 J=3,50 
I=MAX (I, K(J)) 
Hed 9)... te wo 

- 12= 10° Loge coe 
: 13 = 20 . . 

CALL MTXMLT (A, Ti, 12, B,13, Cc). 

END 

(5) ; mo 

6.9 Statement Functions 

It often happens that a programmer will find some relatively simple 

computation recurring through his program, making it desirable to be 

able to set up a function to carry out the computation. This function would 

be needed in only the one program, so that there would be no point in 

setting up a new supplied function for the purpose ~ which involves further 

work. Instead, a function can be defined for the purpose of the one 

program and then used whenever desired in that program. . It has no effect 

on any other program. 

A statement function is defined by writing a single statement of the form 

: ns : ; ‘ Page 71 



asb, where 4 is the name of the function and bis an expression. The 

name, which is invented by the programmer, is formed according to the 

same rules that apply to a variable name: one to six letters or digits, the 

first of which must be a letter. If the name of the statement function is 

mentioned in a prior type statement, there is no restr ciction on the initial 

letter; if the name is not mentioned in a type statement, the initial letier 

distingui hes between real and integer in the usual way. The name must 

not be the} same as that of any supplied function. 

The name of the function is followed by parentheses enclosing the argu- 

ment(s), which must be separated by commas (if there is more than one). 

The arguments in the definition must not be subscripted. 

‘The right- -hand side of the definition statement may be any expression not 

involving subscripted variables. It may use variables ‘not specified as 

arguments and it may use ether functions (except itself). All function 

definitions must appear before the first executable statement of the 

program. If the right-hand side of a statement function uses anothe 

statement function, the function definition of the latter must have appeared 

earlier in the program. 

As an illustration, suppose that in a certain program it is frequently 

necessary to compute one root of the quadratic equation, ax” + bx + c= 6, 

given values of a,bandc. A function can be defined to carry out this 

cornputation, by writing : 

ROOT (A,B,C) = (~ B+ SQRT(B¥*2 = 4,*A*C))/ (2. A) 

The compiler will produce a sequence of instructions in the object program 

to compute the value of the function, given three values to use in the 

computation. 

This is only the definition of the function; it does not cause computation 

to take place. The variable names used as arguments are only dummies; 

they may be the same as variable names appearing elsewhere in the 

program. The argument names are unimportant, except as they may 

distinguish between integer and real. 

A statement function is used by writing its name wherever the function 

_value is desired and substituting appropriate expres sions for the 

arguments. ‘Appropriate’ here means, that if a variable in 

the definition is real, the expression substituted for that variable must 

also be real, and similarly for the other types of variables. The values 

‘of these expressions will be substituted into the program segment 

established by the definition and the value of the function computed. The 

actual arguments may be subscripted if desired. 

Examples of the use of the statement function terms defined are: 

Z = ROOT (2.0,8.0,3.0) + ¥ ; ; : 

which finds a root of 2.0 x +6x + 3 and adds value y 

“Page 72 



Z= ROOT (E,DM+ 5,0,DM)* BETA - ATAN (¢ 

which finds the root of (Exc +(DM+5) x + DM) and multiples it by BETA, 

before subtracting ATAN C. : : 

Variables in the right-hand side of the statement function definition need 

not all be dummy argements. If a variable name is not a dummy argument, 

it has the same meaning as that name anywhere else in the program unit. 

Page 73 & 74 

2 
p
e
a
n
 



CHAPTER 7: USE OF MASIR/SIR CODING WITHIN FORTRAN TEXT 

7.2 . Code Sections 

There are certain operations which are faster and more economical when 

written directly in MASIR than when written in FORTRAN and translated 

into machine code. 

The examples used in this chapter illustrate the method of writing SIR 

coding as part of a FORTRAN program. 

d that the reader of this chapter is familiar with the programm- 

e MASIR. 
It is assum 

ing languag 

A code secti nay either be a complete subprogram or may be a part of 

a program the remainder of which is written in FORTRAN source text. 

In the latter case, the machine code instructions are preceded by the 

directive CODE written as a FORTRAN statement on a line by itself and 

terminated by the directive FORTRAN written on a new line. : 

7.1.3 Forrn of Machine Code Instructions Within a FORTRAN Unit 

instructions are written ina form similar to 900 series SIR 

coding. These instractiens are written one per line. Labels should aiways 

be written on the left hand edge of the coding sheet i.e. to the left of the 

vertical line 'free-format' coding sheet. The instructions 

labelled o spaces from the label, or alternatively 2 

the label 

Machine cod 

“The function consists of an va qnsigned one or 

e Oto 15, preceded by a / if the instruction is 

idress par ) follows the function on the same 

theses eithér at the beginning of a 

.dicates that the remainder of the 

d by the compiler. I should be néted 

ight parentheses te terminate the 

nd over more than one line. te
 

ith identifiers of the 

e to five digits. 
Machine cc 

form Qn, 

Examples: 

Q) G2o0 



nis treated by the compiler in the sarne way as FORTRAN 

- It should be noted that these numbers should not be duplicated 

label in the program unit. The number n may be used ina 

GOTO statement within the program unit and similarly any Fortran state- 

yoent number m within the unit may appear in a machine code jump (branch) 

instruction as an identifier preceded by the letter Q i.e. Qm. In either 

case the rules of FORTRAN must be obeyed; for example a GOTO or machine 

code jump must not cause control to be transferred into a DO loop from 

outside its range (except for an extended range DO}. 

with any othe 

7.4.5 Operand 

The cperand (or address part) of a machine code instruction may take one 

of the following forms: : 

G) Constant. An integer (+ or -) or octal (&) literal constant may be 

introduced. These are handled by the compiler as FORTRAN 

constants and are allocated a position in local workspace. 

(ii) Variable or Array Name. The address placed in the machine code 

instruction depends on whether the identifier is a local variable, 

array, item in COMMON or a formal parameter. For an item ina 

localdata area, writing the name as an operand causes the address 

of the variable to be placed in the instruction. If the name has not 

been previously encountered by the compiler in the current program 

unit, it is classed as an integer or real variable according to 

FORTRAN implicit type and the allocated space is local data 

(implicit types follow the rules state in Chapter 2 - integer variables 

must start with one of the letters I, J, K. L, M or N). 

if the variable name quoted in the address part is a local array 

name, the address placed in the instruction is that of the first 

element i.e. (1), (1,1) or (1,1, 1) of a one, two or three dimensional 

array respectively. In either of these cases, the identifier may 

be followed by a positive offset +n for referencing multi-word items. 

If the identifier is a variable or array in COMMON, or a formal 

parameter of a subprogram, writing the name as an operand causes 

the address of a local data location to be placed in the instruction. 

This location holds the address of the variable or first array 

element relative to the store module of the current program unit .° 

(ii) Absolute addresses. The machine code function may be followed 

by an unsigned integer in the address part of the instruction, 

indicating a core store address, input/output address ora number 

of shifts. : : 

7.1.6 Example 

The example which follows is a subroutine containing machine code ingtruc- 

tions. 

“Page 16 



oe 
_¢C THIS SUBROUTINE SHOWS EXAMPLES OF MACHINE-CODE SECTIONS 

SUBROUTINE SUB(IP) 

- DIMENSION IA(100) 

COMMON K, 1(100) 

CODE . 

4 °~«45 (ADDRESS OF J) 

5 Iws 

FORTRAN 
DO 9 N=1, IP 

IF (N-120) 1,2,2 

1 CODE 

0 IP 

/4 o (VALUE OF IP) 

0 K 

; jz 0 (NEGATE AND ADD VALUE OF K} 

9 Q2 

- 0 ON 
/4- IA (cer iA [N+1] ) 

0 Iws 

15 0 (STORE IN 5) 

| a2 | 
lo Iws 

4 TA+20 qa fai} ) 

- 1 ~6 : 

14.37 . Se 

6 &077770 _ an: 

7 99 i] 

5 M . 

FORTRAN , | 

WRITE (3,8) M : i 

8 FORMAT (15) ; : fod 

9 CONTINUE. 

_. RETURN 

_\ END 
Page 7? 



p
r
o
n
 

7.1.7 Return to FORTRAN Text 

After a group of SIR machine code instructions a return to the FORTRAN 

source program will be necessary, this can be achieved by using the 

directive FORTRAN written on a new line. ; 

7.1.8  Gonstraint on Symbolic Names 

When machine code instructions are included in a program unit, possible 

confusion is brought about when using variable names composed of the 

letter Q followed by 1 to 5 digits. Such names cannot be referenced within 

a machine code section as they would be treated as label references and 

so should be avoided in the FORTRAN text. ‘ 

7.2 Program units in Machine Code 

The facility for in-line machine code will cover the majority of requirements 

not catered for by the FORTRAN language, with the advantage that the standard 

subroutine linking code is automatically ingcrted by the computer. The loader, 

however, also allows independently compiled MASIR blocks to be incorporated 

into an object program. The following points summarise the rules for calling 

MASIR program units from within FORTRAN texts. : 

1) On entry to a block of SIR code, a correct module-relative link 

_has been planted in the first word of the block and a jump made to 

the second word. At this time, the accumulator contains in bits 

17-14 the module number of the call minus the module number of 

the SIR block. Following the call are the addresses of any operands, 

relative to the module of the call. A parameter address word con- 

taining a direct address has bit 18=1; one level of indirection is 

provided by setting bit 18=0. 

2) he macro CALLG (name) should be used to call any further sub- 

routines, and parameter addresses set upas previously defined, 

In principle the Main program of an executable system can be in 

MASIR, calling FORTRAN subprograms by CALLG. 

3) It is not possible to access FORTRAN COMMON storage, except by 

passing addresses of items in COMMON as parameters to the SIR 

block. . 

4) Return should be made to the location following the last parameter _ 

of the call. 

These rules are now expanded in greater detail. 

Within each store module (block of 8192 words) inte which 4 program is 

loaded, the FORTRAN/MASIR loader places a set of instructions known 

ag module code; these provide a means of transferring between subroutines 

in different modules.’ When the FORTRAN compiler generates a’call of a 

SUBROUTINE or FUNCTION, it generates a special macro which is processed 

Page 18 



by the Loader. The Macro Assembler MASIR generates the same macro 

when the source code macro CALLG is used. CALLG is written in the 

form: : 

CALLG(SUB) 

‘where SUB is the name of the subroutine to be entered. 

The loader macro, previously mentioned always generates three words of 

code. If the subroutine in question is loaded into the same module as the 

calling routine, the loader generates a dicect subroutine call, equivalent 

to the assembly code sequence: 

4 40 

11 SUB 

8 SUBil 

If the subroutine is loaded into a different store module, the loader gener- 

ates, for each call, 3 words equivalent to the assembly cede sequence: 

A +SUB 

11 QMC (Call SUB via Module Code) 

8 .QMC#HI 

he
 

ian
 

ed
 

0 or uu
 ie]
 

ey
 where +5UB represents the address of a location holding the a 

SUB relative to the calling module. 

The module code QMC has the form: 

Ward 

; 0; QMC >>| 

1; ; to 10; (Reserved for FORTRAN, etc. use) ; 

: 1; 5 W {Store Relative Address) , 

12; OW ; 

13; 6 - &60000 

14; —- 2QMC 

15; ; : /5 0 (Store adjusted link) 

16; 6 &760000 

1a /8 1 (Jemp to subroutine entry) 

This code is automatically duplicated in each madule in which code is 

stored. 

The called subroutine may be written in Agsembly code or FORTP.AN. I 

SUB is written in Assembly code it should have the usual form: a 

rn
 

Page 79 



SUB >! (Link) 

(Entry point following link} 

(Body of Subroutine} 

Q SUB (Exit) 

/81 

If the call of the subroutine is from FORTRAN, this example is 
equivalent to a SUBROUTINE with no explicit formal parameters. 

If the Subroutine has two explicit formal parameters, e.g. SUB2 (I,J), 

the 3 word calling macro will be followed by: two addresses referencing 

the actual parameters. Exit from the Assembly code subroutine would be 

to the third location after the call (e.g. by /8 3 jump). 

For each parameter address, if Bit 18 = 1 (i.e. the word is negative) 

Bits 17 to 1 hold the direct address of the parameter, relative to the 

calling module. If the word is positive, (Bit 18 = 0), then Bits 17 to} 
contain an indirect address. This address points to a location of store 

holding the actual address of the parameter, relative to the calling 

module. 

Example: 

SUB2 starts at 700070 (location 7000 of store zone 0), and is called froma 

program in zone (Module) 1 say at 500¢1. There are two parameters to 

the call, the first direct, an array starting at location 800%1, the second 

indirect, an integer at 200042 (i.e. 18384). The loader has allocated 
OMC to location 80001 in store zone }. The call might take the form: 

4 600 

Li 8000 

8 8011 

AY) ~ g00 (Direct address, relative to Zone 1) 

0 700 (indirect address) 

where 600%) will hold -1192 (= 7000-8192) the relative address of SUB2. 

And 70071 will hold +10192 (= 8192+2000) the relative address of the 

’ second parameter. 

In MASIR assembly code this may be written: 

CALLG(SURB2)} . 

{O ARRAY ore Lo . 

(8) ADRB ; 

a ° Page 86 



«=, Where ADRB is a local data location holding the address of the second 

—% parameter. If the second parameter is fixed one could write in ADRB: 

ADRB +X 

- _ where X is the (global) name of the actual parameter, but this could be 

simplified further by omitting ADRB and writing: 

= CALLG(SUB2) 

/0 ARRAY _ 

0 4X 

. When writing in Assembly.code any parameters referenced by direct address 

must be in the same module as the call, Any non-local parameters which 

are, or might be, in another module must be referenced indirectly. This 

~ is because the +LABLL facility of the assembler may generate a negative 

or a positive address, depending on the relative position of the lebel. 

Therefore, it is not permissible to use the forrn +LABEL on its own, 

(i.e. not preceded by a function number) in the words following the CALLG. 

0 +LABEL is permissible because its generates an indirect ("literal") 

address, and the parameter word itself will always be positive. 

if written in Assembly Code, the subroutine SUB2 might take the form: 

[SUB2] 

SUB2 >t Bn leg 

5 ADJA (Address adjustment) 

i SUB2 : 

el, | 
° 9 STPAI (Direct address) 

1 ADJA ) oe 

5 WwW 
8 WwW 

~ /4 0 ; 

STPAI 6 &37TTT77 

- 1 ADJA 

5 PAL (Store address of first parameter) 

0 SUBZ 

/4 2 

7 9 STPA2 

ADJA 

5 Ww . 

Page 81 



[4 8 

STPAZ 6; &37T77TT7 

Y ADJA 
Ww (Store address of second parameter) 

0 Ww , 

[4 0 (Pick up value of second parameter) 

(if the ;rogram is io be run on 905 or 920C only, the 5 w,G WwW 

sequences may be replaced by ATB). 

Exit from the subroutine would normally be in the form: 

0 SUBZ . eg 
183 Cs 

The reader may find it helpful to work through the given examples, using 

numeric examples of addresses, to confirm that the parameters will be © 

accessed correctly, and that return will be made correctly to the calling 

program. 

A FORTRAN function call will be compiled in the same way as a subroutine 

call. If itis an integer function, the result will be held in the machine 

A-register on exit from the FUNCTION, Ifa real, double precision or 

complex FUNCTION the result will be in the appropriate software pseudo- 

accumulator of QFP. : 

If the subroutine written in assembly code will never be called directly 

from FORTRAN, it is of course possible to simplify the subroutine bady, for 

example by only allowing direct address pararneters, or by a completely 

different method of parameter passing. The use of the CALLG macro 

does not dictate any particular method of parameter passing, it merely 

supplies an address adjustment factor in the A-register on entry to a 

subroutine. : 

Page 82 



CHAPTER 8: WRITING FORTRAN PROGRAM 

8.1 Program Writing 

The format for Standard FORTRAN programs is based on the use of punched 

cards. Since the majority of 905 FORTRAN users input programs via the 

medium, paper tape, an alternative format called free~format is provided. 

The Standard FORTRAN format for program input is referredto as fixed 

format. - 

Column numbers in fixed format input are determined by counting the number 

of printing positions from the left hand margin (i.e. the number of signifi- 

cant printing characters since the last new line (linefeed) character, 

including space but excluding null (blank paper tape}, carriage return and 

erase. : ; : 

8.2 Fixed Format 

When writing programs in fixed format, a FORTRAN coding sheet should 

be used, with individual character positions marked on each line (squared graph 

paper may be used as an acceptable alternative). The first six columns 

are reserved for special use, and columns 7 to 72 usually contain statements 

(spaces are not significant in this area except where specifically stated 

Sth ated e.g. Hollerith strings). ; a 

The significance of the various lines are as follows: 

a) COMMENT lines of a, 

A cormment line must commence with the letter C written in the 

first column; the remainder of the line contains text inserted 

by the programmer. They are used to improve visual interpreta- 

tion of the text to a programmer or user who wishes to under- 

stand or modify the program, or for the purposes of the original 

programmer who returns to modify the program after considerable 

absence frorn the program(Comment lines are ignored by the 

compiler, but mast not occur between @ line and its continuation | 

line, or between two continuation lines). ; 

b} Initial lines 

line ig the first line of a statement (frequently it will 

e ofa statement. It is distinguished by leaving 

or zero. i.e. the sixth significant character in 

ace cr digit 0). Columns | to 5 will either be blank or 

suation lines > - . 

wuation Line is used to extend a staternent which requires 

rs that may be punched ona single line. It must 

follow an initial line or another continuation line (Comment may 

the middle of a statement}, 

we, a . : . Page 83 

i 



8.3 

NOTE: 

A continuation line is written. with a character other than space 

(blank) or zero (O} in column six.. In practice, it is usual to use 

the digits 1 to 9 to number the continuation lines after an initial 

line. There may be up to 19 continuation lines to a single statement 

in a Standard FORTRAN program, but $05 FORTRAN will not 

detect the Limit. . 

There is also a limit onthe complexity of a statement, th 

complexity being expressed by the number of nested expressions 

and function calls. 

It is recommended that columns 1 to 5 of a continuation line are 

leit blank. 

END line - 

An END line is the line which terminates a program unit. 

It should be written with spaces folanks) in. olemns ito 6, and th 2 

letters E,N,Dincolu 

executable statement and the statement preceding it must bea 

GOTO, STOP or similar statement. If the program execution 

apparently leads to an END line, the effect is undefined. 

te 

s7,8,9 respectively. The END lineis notan 

Free Format 

The compiler discriminates between free and fixed format input 

as follows. Fixed Format is assumed initially,but if the first 

character or the first line of a program unit is a character[ 

(apart from new line) this introduces a cormment line; the program 

unit is read as free format. Every free format program unit must 

start with a comment. 

It ig not sufficient for only the first of a group of units to start 

with a comment. 

When either writing or punching prograrms, the following rules must 

be observed: 

Programs are written on lined paper with a vertical Hne approx- 

‘imately 1} inches from the left hand margin. 

Each FORTRAN statement starts ona new line and the statement 

proper is written to the right of the vertical line (columns 7-72 incl). 

Statement numbers are written to the left of the vertical line 

(columns 1-5 incl.). 

Continuation lines are to be indicated by 4 currency symbol (f) to 

the left of the vertical line (Continuation lines are used where the 

statement is too long for one line of text). 

Comment lines in free format are to be indicated by the symbol c 

written to the left of the vertical line (In fixed format ,the letter Cis 

used for this purposeé,again to the left of the vertical line). A comment 

line is ignored by the compiler. : 

: aoe oO Page & 

1
 



f) - When punching, any cade to the left of the vertical line is punched 

first; two spaces follow and finally the statements. 

8.4 Punching Instructions 

An example of program punched from coding is given in Section 8. 6. 

Punching rules are as follows: 

a) The program can be punched on any type of tape punching equipment 

operating in 900 series, ISO, British Standard or ASCII code. 

Whatever equipment is used, the punched tape produced should be 

verified (using a verifier punch) by a second operator, or should 

_ be printed out on the teleprinter. The print-out produced should be 

checked against the original program coding to ensure that no 

punching errors have occurred. 

NOTE: On some type of punching equipment newline is punched as a 

single character, whilst on other types a combination of carriage 

return and line feed characters is used. Onthis latter type of 

equipment, N consecutive new lines should be punched as? 

carriage-return, N line-feeds, blanks 

b) A program can be written on a pre-printed FORTRAN coding 

Sheet or on lined paper as specified in Section 8.3. 

-e) Always punch the full written program (i. e. include all blank lines, 

spaces etc.} to ensure a correct print-out. 

d) For Free Format text, always ensure that two spaces are left 

between code to the left of the vertical line and the rest of the 

information carried on that line of coding. 

e) Exercise care to avoid confusion between the following sets of 

characters: : 

Figure 6 and the Letter O 

Figure 1 and the Letter I 

Figure 2 and the Letter Z 

Figure 5 and the Letter & 

These characters must be punched correctly and punch operators must 

familiarise themselves with the various punching conventions used by the 

various programmers in their coding. 

NOTE: There is no universally accepted convention, even for distinguishing 

between letter O and figure 0, although it is common practice to 

slash a zero (f). : 

f) Always run-out about 6"(15 cm) of blank tape at the’ beginning of 

every tape punched. : 



gf) If an incorrect character is punched, this may Le rectified by 

backspacing and overpunching with an ‘erase! character. The 

terase! character does not count towards the maximum number 

of characters that can be punched ona line (see db). 

h) A line of text must not include more than 80 characters (blank and 

erase do not count towards this total). : 

8.5 Names Starting with Q 

jf the first character of an identifier starts with the letter @, the second 

character must be the letter U. . 

8.6 Example of Written Program in Free -Format 

C MATRIX MULTIPLICATION 
SUBROUTINE MXMULT (A,B.C,1,5,k) 
DIMENSION A(I,k), B(Z,J),C(V,k) 
DOUBLE PRECISION AA 

[ A= B*C 
poll=i,1 
DO 1lkk= = Lk 
AA =0 , 
DO2ZII= 

2 AA = RAB ‘at, JI) * GC as, sek) 
IF (AA-1D19)1,1,4 

1 A(II, kk) = AA ; : : : . 

- RETURN 
4 WRITE (3,9) AA 

: GOTO 1 

9 FORMAT (22HINNER PRODUCT TOO BIG =, 

g p20. 10) 
: END 

, 

This program would then be punched thus: 

[ MATRIX MULTIPLICATION 
SUBROUTINE MXMULT (A,B,C,1,J,k) 
DIMENSION A(i,k), B(L 3), CW, k) 
DOUBLE PRECISION AA 
[ A=BYC 

pO 1 Ii=l, i 
DO 1 kk=l 
AA=O 
DO 1 Tl=1,1 
‘DO 1 kk=l,k 
AA=O 
DO 2 JJ=1,F 

2 AA=AA+B(II, JJ) *C (JT, kk) 
Ip (AA 1D19)1,1,4 

1 AUI, kk)=AA 

RETURN 
4 WRITE (3, 9)AA 
GOTO 1 



9 FORMAT (22HINNER PRODUCT TOO BIGs, 
g 20.10) 

> END 

An alternative layout for the coding of the example in fixed format 

would be: 

C MATRIX MULTIPLICATION 
SUBROUTINE MXMULT (A,B,C,1,3,K) 
JIMENSION A(I,K), BU, K),CU,K) 
ROUBLE © -RECISION AA 

CG A=B*C 
pO 1 i=1,1 . 

DO1KK=i,K 

AAO 

NO2ZTIHALT 

2  AABAAFBUIE,II)*C (IJ,KK} 
if (AA-1D19) 1,1,4 

LOA (1, KK) =AA 
RETURN ; - : : . ! 

4 RITE (3,9)AA . ° ; 

Gore I 

FORMAT (22HINNER PRODUCT TOO BIG= © . | 

1 D20.10 . a ; i 

END — : . . } 

8.7 Correction of FORTRAN Programs 

Corrections to a FORTRAN program must be made to the original FORTRAN i 

text. -Individual units changed should be re-compiled. . +] 
i 

Page 87 & 88



CHAPTER 9 COMPILER OPERATION 

The compiler is . designed to process independent program units, which it 

converts into relocatable binary form suitable for presentation to the linking 

loader. Once compiled, a program can be incorporated in any number of 

object programs. 

A secondary output identifies the program unit and specifies to the programm - 

er any error detected during compilation (see Chapter 10). It also 

optionally supplies a store map and a list of externa] identifiers refer- 

enced by the program. . 

9.1 Options : ; : a 
. <r 

ro 

Options are expressed 25 an octal number formed from the sum of 

the individual options required by a program; if all options are omitted, 

standard option 00 is assumed. Values of other options are: 

ied
 

i i. 
ol Syntax check only 

02 Data map required con : So , a 

04 Data ma p ontput fo punch 

10— Pack integer arrays _ : 

Hence, a program with standard option 00 calls for normal compilation 

with standard integer arrays (i.e. not packed). A program with option value 

octal 13 calls for syntax check (octal 01), data map requirement (octal 02), 

teger arrays (octal 10), with packed 

9.2 Secondary Output — . . 

The heading FORTO2 is output when compilation of a program unit 

commences (the serial number identifying the version of compiler in use, 

which can vary). Error messages,if any,are next output and are followed 

ed) and finally the terminating message. This” by the data map (if ree 
ses the form output tak 

UNIT xxxxxx 3 SIZE=nnnn - 

where: 

xxxxxx is the anit name, and 

nnnn is the number of words occupied by code, constants and local variables 

a and arrays but NOT variables or arrays in COMMON. 

When an error occurs. a value for the unit size is output which includes 

code, constants etc. vis value does not include the error statements 

and the value should therefore be treated with caution. 

9.3- Error Reports 

” 

weeuners et The general fo an error output indication is: 

Page 89 



ttt nnnn 1111 oe a : ' 

where: , 

ttt is the error type code (see Chapter 10) 

nonn is the last statement number encountered, and 

1111 is the count of non blank lines since this statement number. 

If an error is encountered before the end of a statement, the part of the 

statement already processed will be displayed on the next line. 

EQUIVALENCE statements are not processed by the compiler until the 

end of the specification section of a program unit. If an error is detected 

during this processing, the statement number and count of lines only 

indicate the first statement following in the unit which js not a specification 

statement. A further number (cc) is output which shows the position i 

-veached within the total EQUIVALENCE information (regarded as a single 

continuous line with blanks and the word EQUIVALENCE omitted). 

If the line (indicated by 1111) is a comment line, the error recorded refers 

to the preceding statement. For all except warning errors {identified by 

the initial letter W), the cutput of RLB is terminated. 

With the exception of error ZZ (compiler workspace full), the remainder of 

the program unit is scanned and checked for correct syntax. Hence, any 

error messages output from this point (i.e. store full) although they may 

be useful to the programmer, must he regarded with caution. 

9.4 Data Map 

If the data map option is set, upon detection of the END line statement the 

following information is output: : 

DATA MAP : xxxxxx 

yyyyyy aaaa b . 

yyyyyy aaaa l bbbbbb 

where: 

-xxxxxx is the unit name; there is an entry in the map Hst for each variable 

ov array referred to in the program unit. 

yyyyyy refers to the symbolic name of an item 

aaaa refers to the relative address of that item, and 

t refers to that address type. The address type can be: 

0 Undefined 

1 COMMON . 

3 Local data 

4 Indirect address in local data mo 
. Page 90 



In the instance of COMMON, the block name bbbbbb is also given. 

All addresses are relative to the start of the program unit or COMMON 

block. Absolute addresses can be derived from a global list after loading 

of the program. 

The 'undefined' type (value 0) includes parameters of statement functions, 

but canalso indicate missespelt names. 

After the variables and arrays are printed the label list is of the form: 

LABELS 

mnnnnn aaaa 

where: 

nnnnnn is the statement number 

aaaa is the relative address of that statement. (relative to the start of the 

program unit) 

NOTE: If the address is omitted, this means that the lebel has been 

referred to but not defined. 

The last section of output lists the external references in the form: 

EXTERNAL 

~ PPPPPP 

bbbbbb ssss . 

_ All external procedure names pppppp or COMMON block names bbbbbb 

referenced within the program unit are included, the latter indicating the 

block size by ssss. Blank COMMON is s displayed asablank with a size. 

Page 91 & 92 



~ GHAPTER 10: ERROR MESSAGES 

Included in this chapter are the error messages which are output at 

Compile- time, leading time, object time and the Control error reports. 

io.k Compile-time Errore 

The following table contains error messages which are output during 

compilation. 

pe 
ae 

pe
ne
 
de

ne
n 

Te me ae Page 93 



6 
ef
ed
 

Compile-time errors 

Error Code Description Comment or Example 

ARD 

ASS 

CHx 

CMN 

CN1 

CN2 

“DAL 

DA2 

DOL 

Do2 

Array declarator error 

ASSIGN statement syntax error 

Character x not found 

Name usage in COMMON 

legal constant formation 

Invalid complex constant 

DATA statement syntax error 

DATA statement st error 

DO statement error 

Do loops not nested 

Dimension not constant, or formal variable if 
formal array. 

'TO' missing or missespelt 

Particular character expected on the basis of syntax 
so far, . 

Item is formal parameter, or has already appeared in 
a COMMON statement. 

Exponent overflow in real constant; integer constant 
overflow}; exponent digits missing; zero Hollerith 
count; possible error in .EQ. operator leading to 

’ confusion with real constant. 

Imaginary part not a correctly formed real constant 

List not ending with comma or oblique. 

Number of items in value list not equal to number of 
data elements; element declared in COMMON, 

Statement number already defined; DO misspelt; 
DO in logical IF. 



eesne : con : * yrrmeresty 

Error Code potest gonna Description Comment or Example ; 

G6
 

a8
eg
q 

EQS 

EX1 

EX2 

EX4 

EX5 

EX6 

EX7 

EX8 

EX9 

/ FOR 

Mlegal subseript within EQUIVALENCE 

Replacement operator usage 

Unmatched parenthesis within para- 
meter expression 

Relational usage . : 

Illegal operator or operand/ 
' Operator combination 

Array or functionusage . ot 

. f 

Incorrect unary usage ~ _ i 
. 

i 

Illegal type association 

Too many open parentheses 

Too many closed parentheses 
eee ee 

ieee eee 

FORMAT statement unnumbered - 

Subscript is not constant, or number of subscripts 
does not match number of dimensions. 

@.g. more than one "=" in assignment. 

Complex item in relational expression, or two 
relational operators. 

@.gi logical operand with arithmetic operator, 

Array or function name not followed by subscript/ 
argument, and not as single argument; statement 
function quoted as an argument. 

Successive unary operators, etc. 

Logical operand in arithmetic expression or vice 
versa; complex or logical within relational; 
integer or DP in complex. 



96
 

a8
ed
 

Error Code Description | Sorminent or Examoie 

FUN 

GTO 

HOL . 

ur 

Nut 

NU2 

NU3 

NU4 

NUS5 

NUG6 

FUNCTION without arguments 

GOTO statement syntax error 

Hollerith constant error 

Logical IF error 

Name missing 

Variable missing 

Invalid procedure name 

Integer variable expected, 
not found. 

Integer variable or constant 
expected, not found. 

Array name error 

Incorrect character count, or Line Feed within 
Hollerith string. 

Logicai IF within logical IF » 

Variable, array, or procedure name expected from 
context but not found, 

Variable or array name (not formal parameter) 
expected from context but not found. 

Name quoted as’ procedure name previously defined 
a8 array or used as variable, 

Name preceding array declarator already defined as. 
array or procedure, 



Error Gode Dese ription Comment or Example 

L6
 
e
e
d
 

PBN 

RET 

Rw 

“Rwe 

“RW3 

SBX 

SN1 

SN2 

SSQ 

STF 

STM 

Procedure name = blockname 

RETURN statement in main 

program 

READ/WRITE format reference 
error 

Input/Output list name error 

Input/Output list syntax error 

| Subscript expression syntax 
error. 

Invalid statement number 
definition 

‘ 

Invalid statement number 
reference 

Statement sequence error 

Statement function name error 

Improper termination of statement 

Not permitted by the loader; this check detects 
some but not all occurrences. 

Format reference is not statement number or 
array name 

Name is not variable or array name 

Implied DO without opening parenthesis, or null 
implied DO, 

Non-numeric character within statement number 
definition 

4 

Statement number reference exceeds five digits, 

No statement number in a DO statement. 

Already defined ag array or external procedure 
name, or used as variable. 



86
 

eB
eq
 

e
e
 

no
t 

ten
 

Error Code Description . Comment or Example 

STY 

TYS 

Statement type error 

Type statement syntax error 

i 

Not correctly formed assignment, DO, or statement 
function; first 4 letters of keyword do not match} 
keyword wrong length. 

WDl 

whbh2 

WFI 

WE2 

WES. 

WF4 

WES 

Warning Errors 

Unterminated DO loop 

IMegal DO termination 

Exponent underflow in real constant 

Improper zero in FORMAT 

Parentheses nested too deep 

Improper scale factor 

Scale factor not followed by 
conversion format 

Decimal point missing from 
conversion format 

Termination statement is not of permitted type 

Maximum value of exponent is 19 (approximately); 
constant is set to zero. 

Format is stored as written 

Format is stored as written 

Syntax indicates scale factor, _but "P" missing, 
Format stored as written 

Format stored as written 

Format stored as written 



66
 
2
8
e
g
 

Error Code 
paenometalamndeeiiaion Description 

nent, Comment or Exarnple 

WE6 

WHC 

WN1 

WN2 

WN3 

WN4 

Wail 

WR2 

WOQ3 

WS2 

No digit following decimal 
point 

Hollerith constant count 

error. 

Doubly~defined staternent 

number 

Statement number usage error 

No path 

Numbered END line 

Formal parameter of multiple 
COMMON in EQUIVALENCE | 

COMMON base extended 

back by EQUIVALENCE. 

Special EQUIVALENCE rules 
contravened 

Logical constant spelling 

Formal stored as written 

Maximum 12 characters in Hollerith constant 
" quoted as argument or in DATA statement. 

First 12 are taken. 

New definition ig used in any subsequent references 

FORMAT - associated label used in normal 
reference, or normal label in input/output 

reference. (First appearance defined usage). 

Uniabelled statement following GOTO, RETURN, IF, ° 

Item is ignored. 

Item ignored. 



Jaane feito — oe — 

Error Code Description Gomment or Example i $2.0? Pp. 

WK2 

Warning Errors 

Procedure call disagreement Number of parameters quoted in two calls of same - 
procedure do not match 

X1 

X2 

X3 

X4 

x5 

Machine Code Errors 

legal first character 

Function code exceeds 31, 

Invalid operand 

Invalid character 

Field too long 

+ 

First character is letter, not F or‘Q 

Not constant, variable, or array - 

Function exceeds 2 digits, label exceeds 5 digits, label 
exceeds 5 digits. 

YLO. 

/YXM 

YY 

Vad 

Invalid logical operator 

Exponentiation mode error 

Free»format line conversion 
error, 

Compiler workspace full 

Presumed operator starts with . but no correct form 
follows, : : 

First character not one of those permitted, or line 
too long. : 

Workspace is used for accumulating dictionary entries, 
and also for transient purposes such as expression 



10.2 Loader Brrer Messages 

See MASIR manual. 

Page 101 



ZO
L 

ed
eq
_ 

-10.3.1 

10:0 | Run Time Errors 

Error reports from Mathematical Functions 

In all these reports the first address is the call address and the second (if present) 

eee, 

the operand address. 

Error Code ’ Description 
enn 

Routine which may notify this error 
ne ne, 

ECI | 

EDI 

EDZ 

EML 

EMM 

EOL 

“£00 

ESN’ 

EZZ 

Overflow on conversion to integer 

Integer divident = »131072 

Attempted division by zero 

Logarithm of negative or zero 
argument requested 

Attempted exponentiation of 
negative real argument’ by 
negative real exponent. 

Integer overflow as result of 
Operation 

Exponent overflow as result of 

operation, 

Square root of negative number 
requested 

Attempted exponentiation of 

zero by sero 

QFP (arithmetic package), 

QID (integer division routine), LABS. 

QFP, QID, AMOD, MOD, DMOD. 

IFIX, INT, IDINT. 

ALOG, DLOG, ALOGIO, DLOGIO, CLOG. 

‘QER, QED. (exponentiation routines) 

TOIM, 

QFP, QED (integer exponentiation), MAXI, MINI, ISIGN, 

QFP, QEG, EXP, DEXP, CEXP, DIM, SNGL, CSIN, 
Ccos, DIM, 

SQRT, DSQRT 

QEI, QER, QED, QEC 

On continuation, a zero result is returned except in the case of EDZ from MOD, AMOD, or DMOD, when the 
first argument is returned. 



co
l 

d
e
g
 

Routine name is always QIO (input/output package) 
the operand address, 

; 10.3.2 Input/Output Error Reports. 
i 

, the first address is the call address, and the second (if present 
Final 6 characters are the beginning of the FORMAT. 

Error Code Description Comment men 

EOI 

"BO. 

EO3 

EO4 

EO5 

E06 

EOQ?T: 

E08 

WOI 

FREE format specified with WRITE 
operation, or logical item in list 
for free-format input, 

Type disagreement between format 
and list. 

Initial character of format is not 
left parenthesis. 

Illegal character in format. 

Format syntax error 

Unmatched parenthesis in format 
or parenthesis level greater than 2 - 

Improper operation for device type. 

Improper QIO call 

Illegal character in data 

(Any leading blanks are ignored) 

& 

e.g! REWARD paper tape. (Error in unit 
number likely). ' . 

Probably indicates serious error in program, 
e.g: overwriting. , 

‘Restart causes continuation ignoring illegal 
character, 

) 



e
e
 
a
 

‘
y
u
o
u
o
d
x
a
 

JO 
T
o
q
u
i
n
u
 
p
o
y
e
s
u
n
a
p
a
g
i
m
 
u
o
p
e
n
u
r
y
w
o
s
 

s
e
s
n
e
s
 

y
r
e
y
s
o
y
 

a
s
u
e
z
 

jo 
yno 

y
u
o
u
o
d
x
g
 

a
d
u
e
x
 

fo 
yno 

r
e
d
o
q
u
y
 

COUN 

Z
O
M
 

F
U
S
U
I
I
E
D
 

w
o
r
y
d
t
z
s
s
e
q
 

a
p
o
n
 

t
o
r
s
 7 

Page 104



% 

10.3.3 Control Error Reports 

"The table which follows contains control error reports. 

Routine Name Error Code Description Comment 

QFP EIF Invalid parameter | } Should only arise 

code ) when QFP is called 

QFP EMS Invalid mode from SIR segment or 
st 

setting ) in-line code 

- QCG ERR Index out of First address is call 
range in 

computed GOTO 

and second is index 
variable. Restart 

causes continuation 

as though index variable 

had value 1. 

Page 105 & 106



CHAPTER 11: OPERATING INSTRUCTIONS 

The following sections contain the operating instructions (for operating 

within FAS or RADOS operating systemssee the appropriate Operating 

System description) for a paper tape environment: 

“LLL1 Compilation 

1} Input the tape '905 FORTRAN COMPILER" by initial 

instructions (Entry at location 8181}. 

2) Enter at location 16. Symbol ~~ will be output on the on-line 

teleprinter. ‘ : 

3) Specify the required option, by typing letter O-followed by one 

or two digits, then newline. 

The digits specify an octal number, the sum of the values required are 

made up from: 

01 Syntax check oniy, no code output. 

02 Data Map required. 

04 Output data map to punch. 

10_ Compressed integer array storage allocation, 

If option zero (OO0} is used, this imy plies normal compilation, no data map, 

and two words allocated to each element of integer arrays (for compatab- 

ility with other FORTRAN compilers layout of COMMON areas). Option 3 

requests a syntax check, with curpat of data map to the on-line teleprinter. 

4) Load the FORTRAN source program tape in the reader and type 
Moor R, to compile the program. Program units will be read and 

processed until a halt code is read {cr ‘dictionary full’ error occurs), 

5) To process further programs, repeat from step 3). 

6) Wind up each relocatable binary ouiput tape as follows: 

When punch output is completed tear off the tape and label the 

underside of the end nearest the tear. Wind the tape te ensure 

that the labelled end will be read first by the reader. ' 

7). The units compiled are 

units may be compiled 

f 

ow ready to load and run. Program 
: io 

Together 

In a batch ao, 

; "Page 107 



ib2 

The '900 Loader’ tape distributed with MASIR is 

FORTRAN relocatable binary tapes generated by 

Compilation of each unit (meain, function or subroat 

dant of other units in a program. ad 

900 Loader Operating astructions for 

binary tape}. Proceed as follows: 

1) 

2) 

» 

8) 

9) 

Load the '900 LOADER ' by initial instructions {entry at 

8181). . me 

Enter at location 16; symbol « is displayed on 

Type options into the loader in the form: 

O followed by the option value in octal (see section LL. 3). cs : 

Load the first relocatable binary tape in the reader and ty 

to enter the Loader. This tape is read until the tape read 

unioads, 

Load subsequent tapes in the reader and press the READ button. 

Press RESET, enter at location 16 and type option 031 to load 

the first library tape called 1905 FORTRAN LIBRARY VOL, rr. 

However, if output is required to paper tape, the option $17L 

should be used. - 

' 
Load the tape '905 FORTRAN LIBRARY VOL. 2! and press the 
READ button. : 

When all programs are loaded, press RESET and enter at location 

16. : 

Type M. 

If there are any unlocated labels, these are printed on the 

teleprinter (i.e. global labels, program names or cata labels 

referenced from programs loaded but not included on any tape 

actually loaded). 

If there ar2 no unlocated labels, GO is output. 

If loading was direct into store, the program may be started 

, by re~typing M, If the loading process produced a binary tape. 

this should now be complete; type M, runout the tape and tear 

off from punch. : . 



pe
om
ma
si
st
 

w
e
e
n
y
 

pr
om
ew
ie
ey
 

10) 

11.3 

lf there were unlocated labels, either return to step 3) or 6) toload 

further tapes, or type Mto run the program disregarding the missing 

labels (OV will be output to indicate override, inthe latter case), Lf 

output was to paper tape, it will be completed, Ifloading was direct to 

core store, the program may be started by typing M again [i.e. 

for the third time). 

If there is a MAIN program, the executable program will be 

entered at this point, irrespective of the order of loading tapes. 

The MAIN program may be either a FORTRAN main unit, or a 

MASIR unit with global label MAIN. 

If there is no MAIN program, the executable program will be 

entered at the first location of the first tape to be loaded. (itis 

possible for this unit to be a FORTRAN subroutine with no 
parameters, in which case the RETURN statement of that sub- 

routine must never be obeyed). . 

If a sum checked binary tape was produced, this will be loaded by 

initial instructions. When loaded, the program may be entered 

by jumping to location 16 and typing M. 

If an option is typed before typing M to enter the program, this 

will be held in the A Register on entry. This option may consist 

of up to 15 digits (i.e. 5 octal digits) long. 

Type C if continuation required after a halt code on inputting data, 

PAUSE, or runtime error message. R or GC may be typed when- 

ever the symbol « is displayed. 

Loader Option Bits 

The loader option must be either a one or two octal digits, the sum of the 

digit values implied follow: . 

Bit 1 

Bit 3 

Bit 4 

‘Bit 5 

if loader to be initialised (first prograrn tape). 
P o 

ie 

‘= 1 if loader not to be initialised (subsequent tapes) 

0 if everything read is to be loaded 

= i if library scan (only load program units which have 

been referenced but have not been located). Ignore 
units which have already been loaded, 

= 0 if loader is to store program in core 

= 1 if loader is to output program on paper tape or backing 

store, : 

= GO if loader is to store program on backing store. 

5 1 if loader is to output program on paper tape. 

(Bit 4 is ignored if bit 3 = 0) 

u °
 if the program to be loaded is to use the built-inroutines 

u i
 ii program to be loaded does not use the built-in routines. 

Page 109 



Bit 6 = 0. . ignore ; 

- freeze current dictionary and store layout. If option with 

bit 5 = OQ and bit 1 = Ois now typed, the loader will be 

reset but the programs already loaded will not be lost. 

They will be preserved instore for use by future programs, 

unless overwritten at runtime. : 

W de
w 

Bit 7 = 6 ignore 

1 list labels 

Bit 8 = © print firstfast messages 

1 suppress firstfiast messages 

0 halt after warnings *CLW, *COM 

i continue after warnings 

Bit 9 = 

Ll.4 Store Layout fo oa a 4 

1LL.4,1 Loading , - 

The loader occupies locations 128 to 2800 (approx. } 

The program entry instructions occupy location 15 to 19 

The dictionary, formed by the loader, occupies store from location 2800 

upwards, with five locations more for each global label. ; 

Ss 
Program is stored downwards in each module between the free store limits 

set by LODSET. A store full indication is given if the program cannot be 

stored without overwriting the loader or its dictionary. Blank COMMON 

_overwrites the loader from 128 upwards to the higher addressed store. 

If a program cannot be inserted into a given store module it is loaded into 

the next module down (Down indicates towards the lower addressed end of 

core store), if sufficient space is available. 

If loading via paper tape reader, the program is not actually stored, 50 

that the store used by the ‘Loader! and its dictionary may be filled with 

program, down to the top of the blank COMMON block, or location 128 

if there is no COMMON, 

11.4.2 Different Store Sizes 

If a core store of moré then 16K is used, LODSET is used to set the 

actual store limit LODSET is built into the '900 Loader' and its use is 

described in the MASIR operating instru ctions. : 

905 FORTRAN programs require 16K of store for compilation since the 

computer and its dictionaries etc. occupy at least LOK of store, However, 

it is possible to load and run programs on an 8K 900 series computer, if 

the loader is set for 8K operation by LODSET. . : 

11.4.3 Library 

The '905 FORTRAN LIBRARY VOL. 1! contain all the Intrinsic and Basic 

External Functions and special FORTRAN object time routines. 

Page 110 AY
 

ee 



"905 FORTRAN LIBRARY VOL. 2' contains the floating point, double length 

and complex arithmetic routines (QPP), the READ/WRITE routines (QIO) 

and PTEXEC. PTEXEC contains character input/output, error routines 

and-“program control (see EX900). 

11.5 Store Map at Run-time 

Store maps for typical program in either 16K or 24K store follow: 

Module 2 

Module 1 

Module 0 

24K 

PROGRAM UNIT 
A 

NAMED COMMON X 

PROGRAM UNIT 
B 

16384 {NAMED COMMON 

| Y 16383] NAMED COMMON U 

. PROGRAM UNIT 

NAMED COMMON Z E 

CG PROGRAM UNIT F 

LIBRARY ROUTINES LIBRARY ROUTINES 
8192 UNUSED STORE 8192 UNUSED STORE 

. 8130 UNUSED 8130 SCB Loader 

PROGRAM UNIT PROGRAM UNIT 
D Gg a 

LIBRARY ROUTINES 
’ | PTEXEC (Library) Library 

UNUSED STORE Routines 

2800 BLANK PESEC (Library) 

—— UNUSED STORE 
i 

COMMON cane BLANK COMMON 
1z8 128 - 

32) A, T.U. LOCATIONS 32 | A. T.U, LOCATIONS 
16] ENTRY POINT ETC., 16 | ENTRY POINT ETG., 

§| SYSTEM LOCATIONS 8 | SYSTEM LOCATIONS 
_0|REGISTER STORES 0 | REGISTER STORES 

16K 

\ Space 

Ocupied’ 

by 
( LOADER 

The 16K version on the right can only be loaded by allowing the loader io 

generate sum checked binary paper tape. 

Page 11] 



These maps only apply to paper tape environment (but not to either the 

FAS or RADOS environment). : 

The total library routines should occupy about 9K of core store, but it is 

highly unlikely that any one program would use all the routines. Only those 

-routines required are actually loaded with a few exceptions, e.g. if SIN is 

required DSIN will also be loaded, since these are to be found in the same 

program and use the same main code section. 

The majority of programs will require routines QFP, QIO and PTEXEC, 

which together cccupy approximately 4000 words. Integer only programs 

will omit the routine OQFP (approx. 700 words) and programs without READ 

or WRITE statements will omit routine QIO (input/output package - approx. 

: 2800 words). Input and/or output could be entirely in Assembly code, Any 

_ FORTRAN program using any STOP, PAUSE, READ or WRITE statements 

will use PTEXEG (approx. 500 words). ; : 

ee on Page 112



APPENDIX 1; BASIC SUPPLIED FUNCTIONS 

Tables A.l.1 and A.1.2 lists both pasic external functions and intrinsic 

fangtions supplied with all 905 Cornpilers. The principal difference between 

Basic External functions and Intrinsic functions is that the former may be 

used in EXTERNAL statements, and be replaced by user's own versions. 

However, the Intrinsic function cannot be replaced by user's own version. 

App.1- 1. 



x
e
t
d
u
t
o
s
 

x
o
t
d
u
o
4
 

L
Y
s
o
 

i 

aTqnoct 
etqned 

Luosa 
1 

[
e
e
e
 

Teo 
LOS 

1 
ef 

LOOY 
TUvVAds 

Teey 
Teoy 

HNVIL 
I 

(e)quey 
| 

L
N
G
O
N
V
L
 
O
l
I
O
0
g
u
a
d
 

AH 

w
a
t
d
u
r
o
d
 

x
o
t
d
u
r
e
y
 

$
O
D
D
 

t 

s
t
q
n
o
d
 

a
T
q
n
o
d
 

s
o
o
d
 

Y 
. 

; 
(
s
u
e
t
p
e
z
 

ur 
°) 

. 
Teo 

y 
Teaw 

goo 
T 

(¥)805 
| A
N
I
S
O
D
 
O
I
M
L
A
W
O
N
O
D
I
U
L
 

xa 
[
d
u
o
s
 

x
e
T
d
u
o
)
 

‘ 
N
i
s
o
 

T 

aTqnog 
—eranod 

_ 
NIsa 

t 
(suerpex 

uy 
2) 

yeow 
[eae 

NIS 
I 

(e)ats 
GNIS 

O
I
M
N
L
A
W
O
N
O
D
I
U
L
 

eTqno 
cr 

etqnog 
o1rpota 

, 

Tey 
Teey 

OIDOTY 
t 

(2)9T 
807 

W
H
L
I
Y
V
D
O
T
 
N
O
W
N
O
D
 

w
o
p
t
d
u
o
y
 

x
a
t
d
u
i
e
9
 

D
O
T
O
 

1 

atqnod 
etqnog 

— 
o
o
d
 

H 
Teewy 

Teay 
D
O
T
Y
 

T 
(2)* 80, 

W
H
L
I
Y
V
D
O
'
 
T
V
Y
O
A
L
V
N
 

; xoTd 
u
o
 

x
e
y
d
u
r
o
)
 

a
x
X
g
o
 

1 

arqnod 
atqneg 

a
x
a
 

T 

Te9y 
[Row 

Axa 
1 

2 
TIWILNUNOdXa 

N
O
I
L
O
N
A
S
 

L
N
G
W
O
D
U
Y
 

I
N
Y
N
 

S
L
N
A
W
N
D
U
V
 

— 
; 

W
O
 
R
d
A
k
L
 

O
M
I
O
G
W
A
S
 

M
0
 
W
I
G
W
O
N
 

N
O
L
L
I
N
I
G
S
 

G 
N
O
L
L
O
N
O
G
 
T
V
N
U
A
L
X
S
 

’ 
S
N
O
I
L
O
N
D
S
 
T
V
N
U
G
L
X
E
 

OISVEA 
T
I
 
V
 
H
I
A
V
L
 

App. i - 2



xatduso9 
xeTduro 

9 
s
a
v
o
 

I 
SN 

TAdoWw 
aTqnog 

ST qno 
c
o
w
a
 

z 
(fe 

pow)le 
O
N
T
U
T
A
N
I
V
I
T
Y
 

eTqnod 
atqnod 

@
N
V
L
V
G
 

z 
Te90Y 

Tee y 
Z
N
V
L
V
 

z 
(fe/le) 

uvjore 

atqne 
atqno 

W
w
 

, 
(suvrpes 

uy 
‘enTua 

Tana 
T
q
n
o
d
 

N
V
i
v
a
 

T 
y
e
d
r
o
u
t
a
d
 

ogy 
st 

11Ns 
oY) 

Teo 
y 

T
e
o
 

N
v
 

T 
(e) 

uejtoe 
I
N
Z
O
N
V
L
O
U
V
Y
 

NOTLONAG 
INGAAS 

TV 
aINUN 

SINSWADUY 
+ 

FO 
REET 

SIIOMW 
AS 

iO 
Ya 

GINAN 
NOLLINIGG¢G 

| 
N
O
L
L
O
N
O
4
 
I
v
N
u
g
i
x
g
 

(
P
4
4
0
0
)
 
S
N
O
L
L
O
N
A
G
 
T
I
V
N
U
S
L
X
G
 

OISVEA 
U
'
t
'
V
 
S
T
E
V
E
 

App. 1 - 3



peaineene sean [oe 

TABLE A.1.2 INTRINSIC FUNCTIONS 

y
r
 

yb 
‘
d
e
y
 

EXTERNAL FUNCTION | DEFINITION ARGUMENTS occu : OMENS == FUNCTION 

ABSOLUTE VALUE | a | 1 ABS Real Real 

TABS Integer Integer 

DABS Double Double 

TRUNCATION Sign of a times i AINT Real Real 

) ie integer INT Real , Integer 
IDINIT Double Integer 

REMAINDERING ° a1 (mod a2) 22 AMOD Real Real 
. MOD Integer Integer 

_CHOQSING LARGEST MAX (a;,a2....} 2 2 AMAXO Integer Real 
ALOE AMAX1 Real Real 

MAXO © Integer Integer 

MAXI Real Integer | 

: DMAXI Double | Double 

CHOOSING SMALLEST | MIN(aj,02,....)| 22 AMINO Integer Real 
VALUE ‘ 

AMINI Real Real 

MINO Integer . Integer 

MIN1 Real Integer 

DMIN ._Double Double 



‘d
dy

 
S
-
T
 

TABLE A.i.2 INTRINSIC FUNCTIONS (Cont'd) 

' NUMBER OF | SYMBOLIC TYPE OF ' 
EXTERNAL PUNCTION DEFINITION ARGUMEN TS NAME ARGUMENT FUNCTION 

FLOAT Conversion from 1 FLOAT Integer Real 
integer to 

real 

FIX Conversion frozr 
real to integer 1 IFIX Real Integer 
(as for INT) 

N a F Bi £ . TRANSFER OF SIGN sign of a2 2 SIGN Real Real 
times [ay 

ISIGN Integer Integer 

DSIGN Double Double 

POSITIVE DIFFERENCE | a 1~Min (az, a2) 2 DIM Real Real 

IDIM Integer Integer 

Obtain most sig. part 
. Of Double Precision \ a SNGL Double Real 
Argument : 

Obtain Real part of 1 REAL Complex Real 
Complex Argurnent 

Obtain Imaginary part al AIMAG Complex Real 
of COMPLEX argument 

Express Single 

Precision Argument 1 DBLE REAL DOUBLE 
in Double Precision ' , 



q
u
e
u
n
s
a
y
 

. 
xe 

{
d
u
o
s
 

e 
jo 

x
e
t
d
u
i
o
)
 

x
e
t
d
u
r
e
d
 

D
I
N
o
o
 

I 
w
o
r
s
e
8
n
f
u
o
y
 

u
i
e
i
d
o
 

wd4dg 
x
e
i
d
w
e
d
 

ur 
s
j
u
o
u
n
i
s
a
y
 

- 
plett 

, 
x
a
q
d
u
r
0
9
 

T
e
o
 

X
T
I
N
D
 

@ 
i
n
t
 

e
i
l
e
 

[
B
e
y
 
O
M
Y
 

s
s
o
r
d
x
g
 

N
O
T
L
O
N
O
S
 

I
N
I
W
G
O
U
V
 

G
W
Y
N
 

S
L
I
N
G
A
W
N
N
D
U
Y
 

. 
F
O
 
F
a
k
 

o
r
t
o
g
w
a
s
 

| 
2
0
 
U
T
a
W
a
N
 

N
O
I
L
I
N
I
G
S
 

a 
M
O
L
L
O
N
A
S
 

"
I
V
N
U
G
L
I
X
G
E
 

(
P
7
8
0
9
)
 
S
N
O
L
L
O
N
A
G
 

S
I
S
N
I
M
I
N
I
 

2
'
t
'
V
 
a
T
a
v
E
 

‘Apps 1 - 6



APPENDIX 2: DIFFERENCES BETWEEN ASA AND 905 FORTRAN 

905 FORTRAN is ASA standard FORTRAN, as defined in USASI document 

X3-9-1966 with the following extensions and restrictions. 

a) The following are extensions to ASA standard FORTRAN. 

Ll. Optionally, free format may be used for program and data 

, (see Chapter 5). 

N 
2. Facilities for in-line machine code (see Chapter 7). 

_ 3. Some relaxation of ASA standard rules on the mixing of arith~ 

metic modes (see Chapter 3}. 

4. Option of "packed integer arrays (see Chapter 2). 

b) The following are restrictions in 905 FORTRAN which are not 

presentinASA FORTRAN. : 

1. Restrictions on the sequence of statements within a subprogram. 

The statements which make up a program unit must appear in 

the following sequence: 

'G) SUBROUTINE or FUNCTION (except in a main program) 

(ii) Specification statements : 

(iii) DATA statements 

(iv) Statement function definitions 

(v) Executable statements, FORMAT statements and 

in-line machine code sections intermixed (in any order). 

(vi) END line. 

7 
2. Restrictions on the sequence of items within an EQUIVALENCE 

group i.e. a set of parenthesized items in an EQUIVALENCE 

statement. 

a) If a group of equivalenced items includes an item which | 

is also in COMMON, that iter must appear first in the 

equivalence group. : 

b) If the same name appears in more than one group that 

name must appear at the beginning of the second and 

any subsequent group in which it occurs. 

Restrictions on names Ww
 

The name of a CCMMON block must not be the name of a 

FUNCTION statement. There are also certain restrictions 

on names beginning with the letter Q (see Chapter 2). 



i
 

—
 

and 

4A. Printing, of Form ated Records ae 

‘This problem may be overcome by | 

oa 

Standard Fortran specifies that the first character of a 

’ formatted record is not printed, but used for vertical 

-. format control. 965 FORTRAN does _print this character. 

5. No BLOCK DATA subprograms in 905 FORTRAN. 
. Doe ; 

Compatability between different FORTRAN implementations. 

The use of ‘A’ format almost always causes compatability 

problems. 905 FORTRAN makes it possible to store up to 

three characters per 18-bit word for each ‘AS format specifier 

(see Chapter 5). : ee be 

Q) storing only one character per storage unit 

(ii) avoiding arithmetic operations ox tests on the stored 

characters, 

A program written in FORTRAN in one FORTRAN implementation 

(on one particular machine) will net necesserily produce the same 

results on another FORTRAN implementation. The factors which 

may cause the program to give different results include: 

a) Different word lengths and internal number representation. 

b) Use of compiler facilities which are extensions to the 

standard FORTRAN, such as those described for 905 

FORTRAN. 

c)} Conscious or unconscious dependance on effects which are 

specific to given compiler system. 

An example of c) would be use of a labelled COMMON block ina 

subroutine; the block not declared in the main program. In 905 

FORTRAN paper tape compiler environment, the data in the 

COMMON block will be preserved when the subroutine is re-entered 

after a return is made to the main program. In systems which 

use overiays, the data will not necessarily be preserved. Thus a 

working program may (unknown to the programmer) be using data 

which is explicitly undefined within the language, and so would 

therefore have a different effect on different machines, These 

points are discussed in the Nationzl Computing Centre (N.C...) 

‘Standard Fortran Programming Manual’ in the N.C.C, Computer 

Standards Series, 



APPENDIX 3: EFFICIENCY CONSIDERATIONS 

It is impractical to give détailed rules on the writing of ‘efficient programs, 

since these would involve detailed knowledge of the compiler. However, the 

foltowing notes may assist the programmer in economising on either the 

store used, or the time taken when running his program. 

Program Size 

Use of the "packed integer arrays" option will reduce the space required 

‘for holding such arrays; the only disadvantage arising is in the lack of strict 

compatibility with ASA standards, and hence with various other cornpilers. 

Each subprogram requires some 20 - 30 words for prologue and argument 

addresses, and these "red tape" operations also take extra time; itis 

therefore inefficient to break a program up into a large number of small 

segments. On the other hand, in an 8k store there is a definite limit to 

the size of program unit which can be handled by the compiler. Some 

compromise is therefore needed. = | 

Somewhat similar considerations apply to statement functions, which 

carry an overhead of about 18 ~ 25 words. A statement function which 

performs a trivial operation may take up more space than it saves. 

Program Speed 

In any program involving floating~point computation, the factor governing 

the running speed is likely to be time taken by the arithmetic package to 

perform the computations, together withany type conversions involved. 

The extent of the computation is normally related in a fairly obvious way 

to the source program ~ repetition of sub-expressions, for example, will 

tend to give rise to repeated calculation (though the compiler will eliminate 

this in some instances), Any calculation within a DO loop will be repeated 

as often as the loop, so that any process not related to the value of the 

control vatiable should be performed before the DO statement. The 

question of the type conversion is less obvious, however. Itis permissible 

to introduce integer constants into a real expression, but they must then 

be converted at object time whenever the expression is evaluated, which 

is inefficient; if an integer sub~expression involves variables, onthe 

other hand, any constants should be written in integer form, and one 

conversion will then be made on the value of the expression. 

A program which involves only integer working will not be dominated by 

any one factor in the same way, and the overheads involved in subroutine 

entry, for example, may start to become significant. In this context, it 

should be noted that integer division is performed by a subroutine involving 

about 40 instructions cbeyed in a normalmanner, and it is therefore very 
smuch slower than any arithmetic operation. 

The difference between the implementation of assigned GOTO and 

computed GOTO results in the former being faster; it would normally 

only be noticeable inaninteger program. -There is good reason for using 

the computed form as a normal practice, but 2 reliable program may gain 

a little extra speed from conversion to use the assigned form instesd. 

App. 3-1 

7 7 

t


