Ca?'f OF '_ Copy. No. " &

: Amendment No, &7

— EAarooni-Elliatt Avieniz Systems Limited
Adrport Works, Rochester, Kent TAET ZXXY

A GECG:Marooni Electronics Company
Telephone: Medway (0834 42400

Telegrams: Blotsuio Rochesier
Telox: 8633274

_ ©7The Copyright in this document is mc property of Eiliett Brothers {Loadan) Limited., 7% document 46 eupplied by Elltor Brothers {Logdont L4

idontal m;d ‘ix;i ey net b ccp{:d \«’*-f.r.f K Jls:ioﬂn dJo sthere form soy parpuss cxoept a6 suliorie

exprius terme that i isdo: be ix’!aii R

- fing by_r.hia Cgmpzmy _ i

43 1 £
£ \-}r\m i vilteralh

M.ASD.
LIBRARY,

This Bock forms pari of the]“_83)
Software I,ibrar_y,

If there ic a G GREZH }AS LIBRARY stanmp
on this page, then this is 2 Rscorded
Copy of the Kaster Book, for waich

an- UPDATIXG service ie a\ailrblé;

so 1t could be uvp-to-daie.

If there is NO stamup or only a
XEROXED stamp on this page, Then ihis
copy hzs N0 updating service; and ine
reader uses it et his PEHIL.

Compiled from Various Sources;
Issued by %.J.Frogzatt.

"’(;,,_V ﬁ’oz)j é\\ \ ‘ ;;.

— PREFACE,

This book describes the following tapess-

905 FORTRAN COVPIIER, 1/1/74, Binary Mode 3;
— 905 FORTRAN LIBRARY VOI 1, 1/1/74, Intermediate Fode 3;
905 FCRTRAN LIBRARY VOL 2, 1/1/74, Intermediate Mode 3.

These tapes enable FORTRAN progrems to be run on a
905 or 920C computer with at least 16K store.

= 505 FORTRAN CO¥PILER, 1/1/74, ¥Pinary Fede

905 PORTRAN LIBRARY VOL 1, 1/1/74, Intermediate

. 905 PORTRAN L IBRARY VOL 2, 1/1/74, Intermediste

CEAFPTER

CHAFTE

2

e

[\S]

Pags
Preface 1
THE CIMRAQTER SET C- 3.1z
ELEMi:’\I"’ OF THE 903 FORTRAN LANGUAGE 13-28
2.1 Constants -~ Definition 15
2.2 Integer Comnstants 14
2.3 Real Constants . ot
2.4 Other Types of Censtants Is
2.4.1 Double Precision Constants 12
2.4.2 C(Complex Conslants 15
2,4.3 Logical Constants 1o
2.4.4 FHollerith Constants 16
.5 Variables ’ 17
2.5.1 Definition o 17
2.5.2 Uses of Variables , 18
2.5.3 Identifiers ik
2.5.4 Integer or Fixed Point Variables) 20
2.5.5 Real Variables 213
2.5.6 Dousble Precision Variables . 2%
Z2.5.7 Complex Variables 2
2.5.8 lLogical Variables \ ' 22
2.5.9 Arrays _ 22
2.5.10 Storages of Arrays : T 23
2.6 IExpressions 5
2.6.1 General 25
2.6.2 Oxzxder of T?valu..'ation 25
2. 6. 3 Treatrﬂent of Intege*‘ and Real Values 26
2.6.4 Results of Integer Division 26
2.6.5 Exponentiation Results 27
" 2.6.6 Types of Allowable Expressions 27

CHAPTER: 3

CHAPTER £ @

CHAPTER 5

-

- .

STATEMENTS

g

Page

(i1)

29-38
3.1 Format 29
3.2 Arithmetic Assignment Statements 29
. 3.3 Mixed Mode Arithmetic 30
3.4 Control Statements 31
3.4.1 Statement Number or Labels 31
304,24 GOTO Statemnents _ 32
3.4.3 Unconditional GOTO Statement 32
3.4.4 Computed GOTO Statement 33
3.4.5 Assignment Statement and Assignment
. , GOTO 33
" 3.4.6 The Arithmetic [¥ Statement 34
3.4.7 The Logical IF Statement and Logical
. : Statements 34
3.4.8 CONTINUE Statement 36
3.4.9 DO Statement 36
3.4.10 PAUSE Statement 37
3,4.11 STOP Statement 38
3,4.12 END Statement 38
32.4.13 RETURN Statement 38
SPECIFICATION AND DATA STATEMENTS 39-48
4.1 DIMENSION Statements ' 39
4.2 COMMON Statements 40
4.2.1 COMMON Statement with \Iamed
COMMON 41
3 EQUIVALENCE Staternents 42
4.4 QRestriction on Seguence of Items in
Eguivalence Group 43
4.5 Restriction on Names in Specification -
' : Statements 43
4.6 FExamples of Statements 44
4.7 Use of Store Map 45
4.8 Typc and EXTERNAL Staterment 45
4,8.1 Type Statement 45
4,8.2 EXTERNAL Statement 46
4,9 DATA Statement 47
4.10 Restrictions on the Seguence of Items within
a Subprogram 48
INPUT AND OUTPUT 49-066
1 Input and Output Statements 49
5.2 The List of an Input or Qutput Statement 50
5.3 Lffect of Numeric Item in READ and WRITE
Lists 52

Page

5.4 FORMAT Statement 52
- 5.4.1 General Form of FORMAT Statements 52
5.4.2 Repeat Counts 54
- 5.4.3 External Records and Newlines 54
. 5.4.4 TField Descriptors Available 55
5.4.5% Scale Factors 56
B 5.4.6 Input of Numbers under Format Control 56
5.4.7 Field Specification I {Integer} 57
' , 5.4.8 Field Specification F (external to fixed"
N _ point) 57
' 5.4.9 TField Specification E {floating point) 58
5.4.10 Field Specification G (Freepoint) ~ 58
5.4.11 TIield Specification D (double precision) 59
5.4.12 Ficld Specification L (logical) 59
B 5.4.13 Conversion for Complex Numbers 59
5.4.14 Field Specification A (alphannmeric) 60
5.4.15 Field Specification X {skip) - 61
) 5.4.16 Field Specification H (Hollerith) 61
5.5 Examples of Field Specifications 62
5.6 Number out of range on QOutput 63
. 5.7 Routine FORMAT Staterment Input b4
5.8 Free Format Input. : 64
5.8.1 Data Tapes for I‘reewFor*nat Input 65
“““ B} 5.8.2 Examples 85
CHAPTER 6 : FUNCTIONS AND SUBROUTINES 6774
. 6.1 Subprograms - General 67
6.2 Main Programs, Subprograms and Program
Units 67
“““““ 6.3 Types of Procedure . 68
6.4 Subprogram Head - 68
6.5 The Subprogram Body 69
= 6.6 Exemples of Function and Subroutine ‘
- Subprograms 70
6.7 Calling a Subprogram 70
- 6.8 Examples of Calling Subprograms 71
6.9 Statement Functions - 7 -
CHAPTER 7 : USE OF MASIR/SIR CODING W'ITHIN "T'ORTRAN 75-382
8 TEXT
7.1 Code Section ’ 75
7.1.2 Format ' 75
7.1.3 Form of Machine Code Instructions
within a FORTRAN Un:d, 75
""""" 7.1.4 Labelling Instructions ., 15
X 7.1.5 Operand 76
7.1.6 Example 76
7.1.7 Return to FORTRAN Text ' 78
7.1.8 Constant on Symbolic Names) ¥8
.2 Program Units in Machine Code - 78

-‘(iii)

THAPTER &8 @

CHAPTER 9

APPENDIN 1

APPENDIX 2

e

(98]

APPENDIX

ClJﬂ"T‘_XL 10 ¢

Page

WRITING FORTRAN PROCGRAMS 83.58
8.1 TProgram Writing - a3
8.2 Fixed Foarmat ' ' 83
8.3 Free Format - ' 84
£.4 Punching Instructions 85
§.% Wames Starting with i 84
8.6 Example of Writien Program in Free«
' Format 86
§.7 Correction of FORTRAN Programs 87
COMPILER OPERATION 89-92
9.1 . Options : " : 89
9.2 Secondary Output & 89
9.3 Error Reports -89
9.4 Data Map ' . _ . 9i0
ERROR MESSAGES 93-106
10,1 Compile~time Ervors - . 93
10.2 Loader Brroer hessages 101
10.3 Run Time Erroxrs 102
10.3.1 Error Reporis frem Mathematical :
Functions 102
10.3.2 Input/Output Error Reports 163
10.3.3 Control Error Reports 105
OPERATING INSTRUCTIONS , 107-112
11.1. Compilation 107
i1.2 900 Loader Operating Instructions for
FORTRAN use 108
11.3 Loader Option Bits 109
1.4 Store Layout 110
©11.4.1 ZLoading 110
11.4.2 Different Store Sizes 110
11.4.3 Library _ . 110
11.5 Store Map at Run-time 111
BASIC SUPPLIED FURCTIONS 1-1 1.6

DIFFERENCES BETWERN ASA AND 905 FORTRAN 2- 1 -

CIENCY CONSIDERATIONS : 3-1

(iv)

2-2

PREFACE

The_information contained within this publication describes the FORTRAN
language applicable to 905 series 18-bit machines and termed '905 FORTRAN';
the ovigin of the word FORTRAN is derived from the words FORmulae
TRANslations., 905 FORTRAN contains most of the featares of full standard

ASA FORTRAMN, see Appendix 2,

505 FORTRAN can be used on any 905 Series 18-bit machine which includes
teleprinter, punch and reader facilities and has a minimurn store size of 16K,

FORTRAN progrars must only be written and/or punched in characters which
are contained in the 900 series internal character code, see Chapter 1,

A's with all other languages (e.g. English, Mathematics and the programming
languages COBOL, USERCODE etc.) rules are applicable to the use of §05

- FORTRAN. These rules are termed the fsyntax? of the language. The
meanings given to elements of the language are termed the fsemantics® of

the lanpguage. Elements of the language take the form of characters used

- singly or in various combinations to form statements, the uses of which

are governed by the syntax of the language.’

Although a programmer may prepare a program which is syntactically
perfect, the sermnantics of that program may not necessarily fulfil the purpose
of that program, It is therefore essential that programmers understand fully
the implication of both the syntax and the semantics of the language and of 2
program written in that language. . -

B ‘ o . . ') Pagel & 2

¥

C_HAPTER 1: THE CHARACTER SET

As all elements consist of characters used either singly or in combination,
characters are the first items to be detailed.

The standard FORTRAN character set consists of the following characters:
A, B, C, D, E F, G, H, L, I, K, L, M, N, ¢, P, Q,R, §, T, U, V, W,
¥, Y, Z,0,1,2,3,4,5,6,7, 8 9, and:

— Character chme of Characier

Blank {space in paper tape code)

- = | Eguals
+ Pius
- - Mim-ls
* : Asterisk
- / Slash
{ Left Parenthesis
-) Right Parenthesis
s Comma
. ' ~ Decimal Point
g ’ Currency Symbol

Standard FORTRAN programsmustbe written vsing the above characters.
Other.characters, which are not part of the standard character set, roay
be used in Hollerith strings and Hollerith constants; the programmer Is
warned that use of other characters may rcotrlcf compatauuuy with other
FORTRAN &mplementations

The full set of characters available for writing 305 FORTRAN programs
are the 64 characters having internal code equivalents in the ﬁ‘ 0 :sa:'i:s'
character code. This code, with the full paper tape represent atioz_, is
given in the table at the end of this chapter. Itis based on the Driti
Standard variant of the International Standards Organisation {150} code.
The following characters have special significance:

Space . This is the character referred to as 't blank! in the FORTRAR
. standard, in accordance with punched :ard conventl
Except where explicitly stated, space is nota signi
characte and may he used freely to iimprove the ap;

of programs,

Newline (Line feed on some teleprinters)
" Newline normally indicates the beginning of a new recsrd, OF
tine, Within a program, lines may be up to 72

c
ignoring null (paper tape blank}, carriage refurn arst erase.

NOTIE: The codes for CARRIAGE RETURN, ERASE and RUNQUT,
' though tkey may appear in a FORTRAN data or program tape
are ignored when read by the compiler.

?

The character for HALTCODE is used to halt the machine at the end of a
tape. If a program comprises more than one tape, each tape must be
terminated with a HALTCODIE. This termination of tape makes possible
the reading in of consecutive tapes. Each HALTCODE must follow a new
line,

905 FORTRAN Character Set

ISO Code Value with Telecode Binary SIR Internal Code NOTES :
Value Parity ~Character Pattern Octal Decimal
0 0 Null 00000.000 | Blank on paper iape;
ignored by program,
1 129 10000, 001 i
s 130 10006,010
3 3 G0000.011
4 132 10000, 100
5 5 00000, 101
6 6 00000.110 ’Illegal characters,
7 135 Bell 10000.111
8 136 10001. 000
9 9 Hor. Tab 00001.001 ‘IIHorizorﬁ:al tab. Igncred
by teleprinter; equivalent
{to space.
Ia 10 Line Fced 00001.010 01 13 $Line feed. Causes newline
| :
11 139 10001.011)
- . Llllegal characters
iz 12 00001.100
13 141 Car Ret, 1G001.101

Carriage return; ignored
by program.

[———

T11°11001

Page 6

6GT 1¢
W 011711000 o¢ 0¢’
T 101711000 62 62 .
00T 11001 941 8¢
| | 170 17000 L7 Lz
|
mhwwudamﬂuﬂmmoﬂmm | OLCTLIO0T val 9¢
10011001 €51 gz
000 110G ¥ i
11700100 €2 €2z
Q0T1T1°01001 051 22
- I01°01C0T1 6%1 e
codes xoded 10
cgndut s37eH C1ojutadolol :
4q pozoudy (1eH 0G1 01000 RN 02 02
.,
\ .
T710°01001 L¥1 61
\ Q106701000 g1 g1
sIal0BIEYT TR < 100 °01000 L1 L1
0G0 01001 Y1 91
TIT710000 S1 S1
DTI°TI0001 A ¥1
N
- , [eUIIDo 12100 wIojlRg 1932BIRYD Aytzeg’ onTEA
SHLON 3P0 [RuILIUl WIg fxeuryg apoosie L, Yt ONIRA oPOD OST

81 22 010°0T101 Z 8LI 0g

S35 LT 12 100°01T0T I LLT b

I 91 0z 00001100 0 8% 8%

(yseis) snprjog ST L1 TIT 10101 / SLT LY

do3g 11nJ Bl 91 0I1°10100 . 9% 9F

- (woydAy) snutiy €1 R 10110100 - G 3

BUIUIO O 21 ¥l 0GT "T010T ‘ 701 v

snla s €1 110710100 + <P £

M§1I018 Y 01 1 01610101 0Lt Al

sTSoyIURIRY 1qITY 6 1 10010101 { 691 17

stsawyueand jya7 3 01 000 *00100) 0F 0¥

{(o30mb vadQ) 210y L L0 1100100 - 6¢ 6t

pues rodury 9 90 011700101 3 991 8¢

S ERELR | S 50 10760107 % €91 Le

‘toquiks Aouorsno ~ relfoq B ¥ 001700100 5 9¢ 5¢

‘s zojuradata) owos uo & € €0 110 °00T0T 3 £91 ¢

sajong Z 20 010700100 " 23 23

"IBIDVIBUD

[2807]1 ~ YITW UOTIBUURIONT 100700100 f €€ €€

e oedg 0 00 00000101 9oedg 091 ¢

' [RWIIDOg 1BI2Q UIDBS ITI0TITYD Atxzg DMITA
SALON S 9POD TRUISIUT TG Areurer apocere] YIIm OnTEA 8pPOD 05T

7

3
Page

_______ 9t 47 001000710 a 89 89
s¢ €% [10°000TT o) 6T Ly’
sEaneT be (A% 010000710 d 99 99
€¢ 1§ 10000010 v 59 §3
‘gaojutad .
~970} DUIOE U0 \ 9ARIN 2¢ o 000700011 @ 261 ¥9
TS XDIUTIADTOY
swos uo (01} gdravsqng €3 L€ P11 11100 é €5 €9
UBYY X93EOID) 0g 9¢ OTT TTIO0T < 061 29
o3 Tenka 6z s¢ 10T 11101 = 681 19
weyh $807] 9z ve 00T 11100 > 09 09
| U0 DTWRG L2 €€ 11011101 ! L81 6§
woT0D 97 A2 010 11100 : 85 8
o 1€ 10011100 6 LS LS
| Ve ¢ 000 11101 g P91 96
sytdig €2 L2 (1rorTot L €81 $§
| 72 92 Or1 701100 9 S VS
12 ¢z 10101100 G €S €5
0z ¥2 00T 01101 ¥ agt 5
61 €7 110701100 ¢ .18 16
TRWITd9 (T TR190 uIsIeg 1930BITYD £yredg one A
SH.LON aPOY) [RUIDIUT YIG Axeuryg oPOODTO T, Y+TM N8 A

°poD OSI

a9

L9 111°016TI : Mo 1T .18
2= 99 0I1°01010 A f;;sfw,o,m}!:f 98
€S 59 107761010 n 59 S8
28 79 00101011 I 212 %8
15 €9 110°01010 s €9 £g
0§ 29 0100101 S 012 43
6y | 19 100701011 o 602 13

: 8% | 09 000°01010 £ 08 08
LY LS T11°10011 O L02 6L
9% 96 0117100190, N 3L 8L
5% S5 101°10010 W LL- LL
SIOWRT < vy | %S 001 °T00TT . T $02 9L
£y €5 110710070 1 5. St
7% 75 . 010710011 o 202 i)
¥ s 100°10011 I 102 €2
0¥ | 0 - | 000°10010 H 22 e
6¢ L% 111700010) 1L 12
8¢ 9% 0TT'000T1 g 861 oL
LE 5% 10T°000TT ci L61 69
Tewtoe (T | 18100 uis Pes I5308IBYD Aitxeg- DUTTA
SELON epoD 1wl Wl | Aavurg opoDoIe L YITA SUTBA 9POD O8I

Page 9

% 1§ 100 10110 Y S01. 501
0% 0 000 10111 4 27 301,
6< LY 1100111 E €2 €01
8¢ 9% CTT°00110 b 201 20T
| Lg 32 10T 00110 o 101 101
"xojuradorel wo 9sed xeddp 9¢ by 00T 00T1T P 822 001
g¢ €% 110700110 2 66 66
ve v 01000111 q 922 86
€€ 8% _100°00T1T ® 622 Lé
“(saxojuradsie)
DUIOS VO F) JIODDT DARID 00000110 N 56 96
. {sx9yurazdora;
QUIOS UO) *a1¥yd DUITIapu() €9 LL IT1°1T1010 G6 56
‘xsqurxd oury wo ., 29 9L 0TI IT0TI i 722 b6
RERCLELREES 19 L 10T°1701T [122 £6
(s 203utadors)
{owos uo 3) ysels ssiondy 09 i 001°11010 / 26 26
193D eaq 3391 65 €L T10°TI0TT 1 612 16
85 zL 01011010 Z 06 06
§ 1033077 LG 1L 110°11010 X 68 68"
95 0L 000'TI0TI X 912 88
6 LON TRUILODC] | €390 uxsned x930eIRYN Ajtxeg INTRA
= SpPOD [EUi07Ul WIS Lieurg opoODOTa L YITM SNTBA oPON OST

- Page 10

‘weifoxd

H

Aq poacuBy - esery TYT° 1111 662 L21

R | ‘ OTT TTITO 921 A
‘sae3oeIRyd TeSa [10T TT110 21 A

00T TIIIT 262 A

, 110711119 €21 €71

B 86 2L OTOTTTTI 2 062 721

LS 1A T00TTTTIT A 6¥%2 121

9g 0L 000 "TTTID x 021 021

- L9 ITT 01110 8 611 611

| g 99 OTT 0TI A 992 811

€5 59 10T 0TITI n Spe LT1

25 ¥9 COT'0TTT10 3 91T 511

15 | e9 T10° 0111 s vz ST

rowtadotor 05 | 29 0T0°GTITO T LT FIT

wo vses xaddn 6v 19 100 L1116 b €11 €11

i 09 000 L ITTT d 0¥e (A%

L% LS T11°10T10 o 11 111

9% 9¢ 01T 10T1T u 8¢z 01T

SH 5G 101°10T1T ux LEZ 6071

W jige 00T °101T0 1 801 801

P €g 110°T0TTY 3 Ge2 LOT

47 ¢ 010°10170 f 901 9071
! S LON f TEUII D9 (] 183190 UIDNES .ﬁgu.mm_,mgu Ajrxeg SNE L

. 2peD Jeurelu] JdIg Axvurg apovoia L TITAM INTBA 2p00 OF]

& 12

og 17F

)
T

s

}'Z)

CHAPTER 2 : ELEMENTS OF THE 905 FORTRAN LA‘NGUAGE_

This chapter defines the elements {rom which 905 FORTRAN statermnents
are cormmposed. They are: ‘

a) Constants
B) __Variablés
- “ c) " identifiers
. d Operators
h e) Expressions -
. f} Functions
2.1 Ccmstantsmi)aﬁnition‘

A constant is a value which remains uncharged throughout its use; it can
be used in one or more statements. For example, in the staterments:
x=a+t+3

Y:b+4

x,a,y and b can vary {i.e. are variables)

+3 and +4 remain unchanged {i.e. are constants).

Constants can be of various types, i.e,

Integer constant

Real constant

Double precision constant - S

Complex constant . }

Logical constant

Hollerith constant

For many straightforward programs it is sufficient to use integer and

real constants only; programmers unfamiliar with FORTRAN should avoid
the uge of other types until more experience isobtained intheuse of FORTRAN,

" If the value of an integer, real or double precision constant is positive,
the inclusicn of a plus sign preceding the constant is opticnal; if the value
represented is negative, a minus sign must precede the constant. An
unsigned vaive is assumed to be positive. : .

L ST o Page 13

2e 2 Integer Constants

 These constants consist of whole numbers (intcgers) and zre written as a

set of digits either optionally preceded by a plus sign, or preceded by a

minus sign.

.

An integer constant can take any integer value in the rany®:
- 131071< constant& 131071

Examples of valid integer constants are:
6
+9387 :
=2001 |
6

Examples of invalid integer constants are!

12.78 - contains a fractional part and is therefore a real constant
10,000 - contains invalid character i.e. comma
16748932 = outside the value range for an integer constant

2o 3 Real Constants

" A real constant can take any (real) value in the range:

-1019_é-c0nstant 5;-_-1 ol% (including zeroc)

Real is used in this instance in its mathematiczl sense of any numerical
value not containing an imaginary part. ‘

A real constant may be written in one of the forms which follows:

7

a) A set of digits containing a decirmal point . g.
2.5 .05 123.
b) A set of digits which can contain an optional decimal point,

followed by a capital letter B and an opticnzlly signed. integer
of one or two digits length, E.g.

Z.581 36E.15 .03E+12

NOTE: In either form the signing of a real constant is optional.

The integer after the character E represents a power of 10 rnultiplying
the number that precedes the E. Inthe examples given the values
represented are!

2.5%100 36%107'% | o03%10™'? - | ‘

Examples of valid real constants avel .
0.0
=2008.0

7 4234
B 0E6 (5+109)

-7.E.12 {m?‘o-::;lgwiz}.

Examples of invaiid real constants are:

! - 12,345.6 . cornmma is an invalid character
4234 - 1o decimal point and is therefore an integery constant
5.86E2.5 - exponent not an integer
— 1.6E+81 - value too large for the range of real constant values
2.4 Cther Types of Constants

Z2od,1 Double Precision Cunstants
For some czlculations it is necessary to use a higher precision than that
for real values. This means that a greater
c’;ip_‘i";s are'necessai‘y to provide for that higher
pvek, sion values in FORTRAN are termed
They are real in the mathematical sense but
ace in the computer store., Double precision constants

used with
number

- precision.
'double pre
occupy mere s

e
o
r'u
¢4}

- can take any value in the range!

on cpnstant is written as a string of digits optionally
¢ followed by the capital letter D and an
izit integer; if not signed, a positive value

A double preocis
containing & decimal point an
)

"'I

outloraﬁ} signed ono or

ig assurned.

alues they represent are: =

— 23456789002 0, 012345674720 ’ _) i

athematical sense; i
In FORTRAN eifther-0ras :

‘A Hollevrith consta
any characters having representat
- . oA A Y
with the exception of newline (see Chapter 1}.
, only those characters in the standard FORTRAN character

it LJ::?'el.bh 5
real constant {(re

is, real constant (

p?'esem, g the ima:

~
ok

"f‘i"’

(-1.0,%3)

(25~5, 5. 6789)

(+6. 7, ~254)

{2.7,0.0)

2.4,3

Logical C

g c are
type variables (section 2.5.8), Th
r sent 1

and thesc
TRUE..
JFALSE .,

i. e, the name oi

2.4, 4 Hollerith

code,
compatibility

. set should be nse

’

onstants

constants and the values they represent U -

a2 positive value
fcr

are:

used in conjunction with FORTRAN logica

~eal constants

nere are twe logical constants perm i slbic

es true and {alse,

They are

written:

the value preceded and followed by a decimal point

-
T8

Congiaz

d.

nf represents a2 string of characters which
A £ [

ray include

ion in the 900 Series internal character

Hol’ierlth constants are w :'1tt6n in the form, unsigned integer (positive},

The number of characters in

a strlng; coummg spaces (olanks) as significant, must be equal tfo the ‘
integer value before the character H. ’

Examples of Hollerith constants are:

1HX

28HTHIS IS A HOLLERITH CONSTANT E
14H#%3 8 (=), +END/

The only positions in which a Hollerith constant may appear in a

program are:

Page 16

For standard FORTRAN

aj In the argument list of a CALL statement,
b)- Ina DATA INITIALISATION statement.

NOTE: Although a Hollerith string may appear in a FORMAT statement,
in the same form as a Hollerith constant, in this use it is not
strictly a Hollerith constant,)

Hollerith constants are represented in the 900 Series store by bebit
characters in 900 Series internal code. They are packed 3 to an 18-bit
word and ieft justified; i, e. the first character is in the most significant
bits of a word and zeros {spaces) are used to pad any remaining bits of
the word. '

The maximum number of characters that can be stored in a variable by
a DATA statement containing a Hollerith constant will depend on the type
of variable: ‘

One word integers 3 characters

Two word integers 6 characters ;
Real variables : ' | 6 characters

Double precision variabl‘es 12 characters

Complex variables) 12 characters

NOTE: Programmers must-be careful when transferring programs

containing Hollerith constants between different types of
machine. Programmers are advised not to use Hollerith
constants unless they are essential to their program. The
inexperienced FORTRAN programmer should avoid their use
altogether.

2.5 Variableg

2.5.1 Definition

"Wariable! is the term given to the identifier of a value and the location in 7
which that value is stored. This value may change according to the use
of a variable in either:

a) A specific program or subprogram, or

b) - A number of programs, subprograms to which it is COMMON
(see Section 4.2)

The location in which this value is held can be similarly either:
a) Unique to a specific program, sub-program, or

b} Common to a number of programs, sub-programs.

Page 17

Variables {including subscripted variables) can be of the following types:
Integer
Real

!
Double precision
;

Complex

chi}tal

For/many programs only integer and real variables need be used. The
inexperienced FORTRAN programmer is advised to leave the consideration
of ¢ther types until the language is thoroughly understood.

— e,

2. 5;24 Uses of Variablas

a) As common variables - © When COMMON to a mimber of
’ programs, subeprograms. In thig
instance their identifiers will be
declared in a COMMON statement
within a FORTRAN program.

b}’ As local variables - Yhen used in a specific FORTRAN
' program or sub~program,.

c) As formal parameters = When specified in the argument list of
a FORTRAN 'FUNCTION' or
HSUBROUTINE' staternent; the variable
is regarded as a formal parameter
(argument) within that function or
subroutine.

In any of the ahove nses the variable name may be subscripted if its identifier
hzs been declared as an array name by means of a specification statement
(sce Chapter 4j. ‘

2.5.3 Identifisrs

An identifier is a name given by the prograrmmmer to an entity within a
FORTRAN program. An identifier may be the name ol:

A variable

An array (see Chapter 4)

A FUNCTICN or SUBROUTINE program unit {see Chapter 6)
A COMMON block (see Chapter 4).

Within a unit of FORTRAN program an identifier can be used to name one
entity of one of the types listed.

If an identifier is not explicitly declared to be one of the typeé stated, it
is assumed by the compiler to be a real or integer variable {An identifier
is explicitly declared by writing it in a SPECIFICATION, FUNCTION, or
SUBROUTINE statement}, -

An identifier must conform to the following rules:

a) It must be a string of letters or letters and digits (not including
spaces), the first character of which must always be a letter.

- b It mav contain from.one to six characters, but must not exceed $ix
j .
characters.
- c) If the first character of an identifier is Q, the second character

must be U, unless it is an identifier defined in a standard software
manual, Strictly this rule only applies to the names of COMMON
blocks, SUBROUTINES and FUNCTIONS, and to identifiers of the
general form On, where nis aset of digits. This rule prevents
confusion with machine code and software global identifiers.

d) If the identifier is the name of an integer variable, array, or
 FUNCTION, it must commence with one of the letters:

LI,®¥,L,M, or N

an exception to this rule is the identifier included in a TYPE
statement {sce Chapter 4}, '

. e) For real vaviables, arrays and FUNCTIONSs, the first letter of an
identifier can {with the exception of identifiers included in TYPE
staternents) be any letter other than:

o 1,3, ¥, L, M, or N,

An identifier occurring in a FORTRAN prOgrarﬁ unit which does not appear
in 2 gpecification statement {see Chapter 4), or as a SUBROUTINE or
FUNCTION name, is assumed to be a real or integer variable of the type
ne first letter. [

hese rules for identifiers must be observed at all times; of particular
irnportance ig the distinguishing between real and integer variable

identifiers. In some instancesaviclationofthese rules will cause theF ORTRAN
cornpiler to. output an error messages but as all errors cannct be covered,
the possibility of a program giving incorrect results is present. For this
reason many programmers will consider it advisable to explicitly decld.re

=11 identifiers by means of Type statements. (Use of a Type statement

meay override the implicii type given by the first letter, see Chaptef 4).

Frorm the pre eneding paragraphs the need {or accuracy in assigning
df*m;ners is ev1den.. and this need cannot be over stressed.

Page 19 -

Examples of acceptable integer v;a-riabl.e identifiers are:
I‘ :

KLM

MATRIX

1,123

Examples of incorrect integer variable identifiers are:

ABC (incorrect first letter uniess an explicitly deciared integer)
5h (does not begin with a letter)
7378 {incorrect character viz. dollar sign)

INTEGER (too many characters)
J34.5 (incorrect character viz. decimal point):

JOB-STEP (incorrect character viz., hyphen, and toc many characters)

Examples of acceptable real variable identifiers are:

AVAR

FRONT
¥009

QuUlIz

Examples of incorrect real identifiers are:

.

QA1234 (letter following Q not U)
SERVICE (too many characters)

8BOX {first character not a letter)

*BCD {invalid character viz. asterisk)

KI.J1 (invalid first character unless explicitly declarecd real)
A+B (invalid character viz. +)

2.5.4 Integer or Fixed point Variables

hese may take any integer value (including zero) in the range!

~131072&value& 131071 L

- &

If this range is exceeded, overflow occurs; however this error is not
detected, except on real to integer conversion.

Integér variables occupy one 18-bit word in the 305 store. However, the
FORTRAN standard specifies that an integer variable takes the same number
of logical storage units as a veal variable. Thereflore two words are
reserved for each integer value, unless the option bit to select single word
packed integersisused (see Chapter 9). This option will save store, butmay

lcad to incompatibility in the use of COMMON and EQUIVALENCE
statermnents when r unmng FORTRAN program on computers other than
es.

905 Series 18-~bit machi

When the two word option is used, the first word contains the value, the
second will {unless used {or a Hollerith constant) be spare.

It is important that all units of a program be compiled with either the
one or two word opticn applied, A check is made by the leader that this
is s0; if not, at load time an error message will be output. If the pro-
gram does not contain integer or logical arrays, this check will not be

permrmed.

Z2.5.5 Real Variables

These are held in store in fleating point form; i,e, a fraction times a

power of 2. They mus
n263<valuegi’ 263
i.e. p"I’DXl 1ately:

~9x1cl8s va.laea" g¥10t

If this range is exceeded

.
t De

18

On continuation, the valu

number (of the correct s

in the range:

at run time, exponent overflow error is reported

is assumed to be the largest possible magnitude

gn).

Real numbers are held tc an accuracy of approximately 8 decimal digits
)’ PF b

(28 binary bits).

If the magnitude of a

real v

-19

ariable becomes less than 2-b4 (10 approx.),

its value is automatically set equal to zero. This action is not reported as

an error,

2;?5; 6: . Doubla Precision Varizhles

i

These variables are us

'appro,xmat*m: than that us

is also allowed.

b

eq 1o
ed for real variables. A wider range of values

represent real numbers to a finer degree of

They are heid in the stere in three word form. For compatz,bsh»\,r with

standard FORTRAN, <
per eliement,

ub

le precision arrays use four words of store

The range of values allowed is approximately: .

—103.00/\/ vajue ../.,_+103Q

If this range is excgede
cutput. The numbers a
binary bits). :

0

M

1
a

re }

t run time, an e.ponent overflow error is

1e}d to an accuracy of 10 decimal digits (35

2.5.7 Complex Variables

If at run time the absolute magnitude of a double pracision value becomes
less than 107390 approximately, the value is sct aulomatically to zero.
This action is not reported as an error. '

These are stored in the form of a pair of real values. The {irst value
represents the real part of the complex number, the second part the

imaginary part.

In 905 FORTRAN, complex variables 0céupy four store locations. The
limits and accuracy of real variables {see Section 2.5, 5) apply to each
part of the complex variable,

_ z.5.8% Logical Variables

These variables may take two values oVnIy': TRUE or FALSE, Erw g0y
FORTRAN, they normally occupy two words of store, but cccupy only
one word if the one word (packed) integer option is used. .

They may be used in logical assignment statements and logical 1IF
statements {see Section 3.4}. '

2.5.9 Arrays (Subscripted Variables)

Variables in FORTRAN can be grouped into sequential sets in the form
of one, two, or three dimensional arrays of data. A one dimensional
array is sometimes termed'a vector', a two dimensional array may
represent a Matrix., The use of arrays enables large guantities of data
to be handled eificiently. '

In mathematical notation it is permis-sible to write:
X1y X2, X3, XKoo v Xn

and in FORTRAN to write:

X(1), X(2), X(3), X{4), .. e JX(N) also:

ml’l,ﬁll,z,lnl’g.....r.......ml’j

L O PR W TRt T DR s T4 hence, FORTRAN gives:

M1, 1), M{1, 2, ML, 3), e . LML,)
M 1), ML 2L, M{T, 3) oo M(LL T,
The name of an array is an identifier formed according to the rules

stated for ordinary variables. It must be explicitly declared as the name
of an array by 2 DIMENSION statement or by dimension inforrnation in

‘another specification statement {see Chapter 4},

Page 22

In the exarnples given previously, subscripts 1,2,3 etc. are integer
constants and M, I and J are integer variables. All allowable forms of

subscript are listed as follows:

-

FORM . EXAMPLE OF SUBSCRIPTED VARIABLE
K , ' X(16)) '
B 7 VARRAY (INDEX)
Tesk , . IARRAY{2%I N}
B +4 | | 2(7+42)
-4 - Z2(KAPPA«100)
kT4 | A{10%N+5)
k#lef " S T A(25IN-1)
— Where:

k and # represent any positive integer constants

. I may be replaced by any integer variable.

NOTE: No other subscript forms are permissible. As indicated in the
examples given, each subscript of a two or three dimensional
array must be separated by a comma. Viz. '

¥(1,7,K)
MATRIX (3*KAPPA=1, 25T+1)

— If declared as an array of the correct explicit/ implicit type, any of the
variable types, integer, real, double precision, complex and logical may
be used as a subscripted variable.

The value of any subscript, eithér a constant or an expression, rmust be
positive, greater than zero, and must not exceed the maximum value for
that subscript in the specification statement by which it was declared. The
aumber of subscripts of 2 subscripted variable must correspond with the

number in its declaration (use in an EQUIVALENGE statement excepted).

2.5.10 Storagoe of Arrays

- The elements of arrays with more than one subscript are red with the
first element being the value which most frequently changes when counting
the elements in sequence. For example, if the elements of a two sub-

- scripted array reprecent rows and columns, the rows element W1ll be
stored first as it wiil change more freq_uemly than the column - elnment

Viz,
N R1 cl A(1,1)
- R2 ¢l A2, 1)
R3 1l A(3, 1)

Page 23_

R4 Cl T a4, 1)

R5 cr o A
RL Cc2 A(L,2)
R2 . Cz2 A(2,2)
R3 c2 A(3,2)
R4 cz . A(4,2)
R5 c2 ° A(5,2)
etc.

In precise form, the storage of the array elements of two or three dime
ensional arrays correspond to storage of an eguivaient one dirmmensional
array as fcllows:

For a two dimensional array A ltm, 1t n element i, cerrcsponds to the
element i+m(j-1}

For a three dimensional arvay A 1: E, l:m, lin elements 2, i,k correspond
to element i+4(j-1}+fm(k=1)

Examples of arrays are:

a) ‘ Elements of Real Arrays:
A(1) |
DOG(3, THITEM~5000, 2% MEAN+10)
b} Elements of Integer Arrays:
LIST(4JULIET) =
J1G(2%1+9, 453 +100)

An array comprising three rows and three colurmns could be shown
initially in mathematical notation thus:

21,1 23,2 21,3
az,1 22,2 22,3
43,1 a3,2 23,3

FORTRAN subscript notation of this array would be written thus:

Af1,1),A(1,2),A(L, 30, A(2, 1), A(2,2), A2, 3). etc.

The identifier for subscripted variables is subject to the rules stated for
non~subscripted variables (section 2.5).

2.6 ° Expregsions
2.6.1 General

A FORTRAN expression is a rule for computing a numerical value., In
many instances an expression consists of a single constant, a single
variable, a single function reference. Two or more of these elements
may be combined {using operation symbols and deiimiters) to build more
complex expressions. '

Fach operation is represented by a unique symbol thus:
'+ indicating positive or addition

indicating negative or negation

1

E

* jindicating rnultiplication (used instead of the character ¥ to avoid.
confusion with the letter X) : '

[/ indicating division ‘ S

*% indicating exponentiation (i.e. raising to a power).

The delimiters used are as follows:

E)

() which enclose subscripts or parameter lists, and modify the order of

evaluation cf the terms within an expression,

{ space” Only used within an expression to clarﬁy reading of an expression,
but ignored by the compller.

'N.OTE: Paventheses may be used to group exprasslor" in t"l same ,

' manner to that in mathematical notations, Thus (X+4Y)”’ must be
written (X+Y)}%%3 in order to convc—:y the correct meaning. An
expression asg ambiguous as!

e N _ .
AT must be written as A¥¥(B**C) or (A'“”‘=B)f-<-"v’ according to the
i requirement inten-led, '

2.6, 2 Order of Evaluation

The current values of the variables within the exprp sion are firs
determined. This may necessitate the evaluation of subscripts or ;anctions
before evaluatien of the main expression can commence,

When the order of operators within an expression cannot be definad clearly
by the use of parentheses, the order of evaluation (of other permitted
operators) is as follows:

a) Exponentiations
b) Mﬁltiplicat:ons and divigions

Additions and subtractions s X .

=
q&e 25

meanings!
a) AFBLC/DEwwE

b} (AxB)+(C/D)=(E**F)

Within a sequence of consecutive multiplications and/or divisions or
additions and/or subtractions, in which the order of svaluation is not
clearly defined by parentheses, the meaning is evaluated from leit to
right, Thus the expression A/B*C would mean (A divided by B} times C
and not A (divided by B times C} and I-J+K would mean (I minus

and not I minus (J ples K}, . - -

Sub-cxpressions with parentheses are evaluated in the same manner but
not necessarily in the same sequence as subscripis or functions; the
value thus attained is used to assist in the evaluation of the main expression,

The eifect of division eﬁctends only to the next element, for example:
A[B*C is equivalent to (A/B)*C or A*C/R -
AJ/B/C is equivalent to AJ[B*C)-

The incerrect order of evaluation of an expression can result in a Ioss of
significance or even in a failure to obtain an answer. E.g. Inthe
expression : A¥B/C if the values of A, B, and C were approximately 1030,
the result of the muliiplication would be 1090 and this result is outside
the permitted range for values of real variables. However, aiter division
the result returns within the permitted range. If the computer cannot
epresent an intermediate result {e. g. 1(}60), the cutcome of the evaluation
will depend on the mode &f working (i e. Integer or Fioating Point)., The
cutcome in integer working is for the evaluation to continue ard this results
in an erroneous answer, The outcome in floating point working is for the
evaluation to stop; an error message is output and continuation of the
program is left to the discretion of the operator.

2.6,3 Treatment of Integer and Real Valusas
The evaluation of an expression containing integer and real values is

achieved by initially converting the integer values or integsr subeexpressions
into real values.

2,6.4 Resulte of Integer Division

The result of an integer division is always an iﬁteger' truncated so that
the fractional part of the exact answer is omitted. Hence,
7/4 gives the result 1{not 2}

-5/3 gives the resuit ~} {not-2)

: ‘ — : | Pag6726

P

o o

-

These resulis mean that the remainder of an integer division can be
easily found. However, these results sometimes preduce unexpected
efiects, e.g. '

5/3%6 gives a result of 6
5/(3=6) gives a result of 0

52(6/3) gives a result of 10
2.6.5 Exponentiation Results

An integer, real, double precision or complex number raised to an integer
power always gives 2 recsult of the same type; i.e, integer, real, double
precision or complex respectively, '

NOTE: This means that the expression I'®kJ (where J is negative) will
always give a result of zero due to the truncation rule,

A real or double precision value may be raised to a real or dcuble precision
power, The result is double precision urless both values are real.
Combinations of exponentiation other than those listed in the table {Section
3.3) are not permitted, '

Attempts to exponentiate zero by mero and a negative real number by a -
negative real power will give rise to an error at run time,

2.6.6. Types of Allowable Expressions

The rules for the mixing of types of expressions are given in Chapter 3.
It should be noted that a sub«expression of one type can usually be converted
into ancther type by the use of the functions: '

IFIX FLOAT DBLE SNGLE REAL IMAG

Page 27 & 28

CHATFTER 3 @ STATEMENTS : : .

3.1 Format

A FORTRAN program consists of a seguence of statements. These
statements can be divided into two types: :

a) Executabls statements, which are obeyed when the program is
run.
b) Non-executable statements which further define the meaning

of executable stdt:mcnts. These statements may be divided into
four types:

(i) Those which provide the compiler with information
- e.g. COMMON statements,
(ii) Those which further define run-time operations,

‘e.g. FORMAT statements,

e which provide inform: 2tion during both compllation

(iii} Thos
and at run-time, e.g. DE}: %\ 'SIO\I statanenfs.
{iv) Those which contain information which ease reading of -

programs, but have no actfuzl effect on the compilation
or running, i.e. Comments,

[aFN

3.2 . Arithmeostic Assignment Statemsnts
. o
To enable a new value of a variable to be ¢ mputed an arithmetic assignment
statement is neceszary., The siatement takss tLe form

where

-iable name written without a sign arnd,

‘al repregents

fu
<
o
-

'b! represents any expression.

An Arithmetic Asst

snment Siaternent is an order to FORTRAN to compute
B the value of the expression on the right and to give that value to the
1 result is assigned to an integer

variable named on the left. ¥Whan a rez
variable, then: T '

a) - it is rouhded towards zero
bl integer overilow may occur

The eguals s g within an awirhimetic assignment statement is not used as
in norraal mathematical notation. Thus it is not permissible to write a
staternant Z-RriO::aTr,f?"-"E-h__%-B ETA, in wrich the value of Z is unknown
whilst the other values are knowrs The anly Tc,oai form of arithmetic
agsignment staterteat is one In which the gide: of the statsment

Page 29

srecise meaning of 25 equal sign
thuas: Replace the value of

value of the expre

to forrm the surn

H
H
H

3. 3; Mixed Mode Avithmatic
'f .
- T3 é ASA standard _;_.“2\3':, a nmumbar of restrictions on arithmetic modes,
‘T'mis: ' '
- a) With the hasgic onerations odd, subtract, *nul’{:ipi*»' and divide, an

elerment can be ¢ombinad with ancther element of the same type,
m:bined with a double precision or

or a regl element may
com;)}e:-: clement,

zs of a and b and on the
always real. Ifb is
ion, the operation is
other instances, the
a by itself ; bg itmes and

b) The validity of a*b

‘ type ¢f b, The resu
an integer variable,
valid uniess both a an
resulf is that obtained by multiplyin

=
dbhare zera. Ina

tzking the reciprocal. If b is 2 real variable,
constant, Or expression, the opeération is only valid if a is
ositive. The result (where it exists) has the valvue exp (b*log.(a}).
/ g3 JEY RN

c} An integer, real or double precisicn value may be assigned to an
integer, real, or double pracision element in an arithmetic
assignment staternent. A complex value may be assigned to a
complex element only.

‘ d) A relational operator can combine two expressions of each of the _
— _ following types: . _ -

R (i) Integer
(i1) Real
- : (iii Double precision

] {(iv] Real with double precision

NOTE: 905 FORTRAN provides a wider range of mixed modes with basic
. operations of add, subtract, multipiy and divide in that an integer
""" ‘element may be combined with a real or double precision element.
Incorrect use of this facility may result in an object program

which is appreciably less efficient than it might otherwise have
been. ‘

A velational expression is one that compares integer, real or double
precision values by using the relational operatorss

JLT. |

— .LE.

. EQ.

. NE.

LGT.

.GE,

- The table which follows indicates the only permissible combinations (where:

R=Real, I=Integer, DD=Double precision and C=Complex).

-

Add, Subtract, Multiply, Divide Exponentiation

B 1 | I D |c A S I {rR |[D|cC
11 %] D* | X| I I | x 1xX|X
_ R (R¥|R | D {C R R |rR |DIx
D p=ip I D X D DIn D X
,,,,, cTIxic 1 x ¢ c clx |x|x
Assignment ' ' Ré"lational

NE=p
- var]! |R |D |C I |R |[D|C
I o J X I JOobdE F X
- R |/ |/ 1/ 1 X R ol TV P 1
D | oY J X D S X
- c Ix {x |x |/ c X |x ¥ |x

(The entries in the MATRIX show the result type: and X indicates when a
. combination is not permitted; |/ indicates that combination is permitted)
I - -
J with % indicates that this combination is an extension to ASA Forirvan.

3.4 Gontrel Statements ' .

Control statements are used when a break is required in the order in which .

executable statements of a program are to be obeyed. A breakdown of the

elements available for making transfers of control in the FORTRAN language

follow, . -

3.4.1 Statement Numbars or La

a4 ——
Lelsg ST

o
a statement. The number can consist of from 1 to 5 {maxzimum]} digits and
is coded in columns 1 to 5 of the coding sheet. Statermnent nuinbers may ‘

A statement number is an unsigned positive integer, which is prefixed to
1 o~

run in random order throughout a program, buf no two statements in

a program unit may have the same st
are used to provide for iute
identity to the numbered siztement

refc”czw es.

3.4.2 GOTO Statemonta

§

A GOTC statement providza the means

to Iy

L

staterment other than the next in seguence. The next execu ¢ statoment
afte; a GOTO s rwise it could
never be executed. '

|

There arve 3 types of:GOTO statmen

are:

The unconditional GOTO statement

T
et

2) The computed GOTO statement ' co)

3

The agsigned GOTO statement

w
L R

2.4.3 UncOnhtmnal 0T O Statemant
Unconditional GOTO Stztements are written in the form:

GOTO n

where n iz the statement number of the next staternert to be executed,
Control is transferred unconditionally

Example:

GOTO 15

15 GOTC 8 ' [
3.4.4. Computed GOTO Statement
A computed GOTO statement provides the user with a n-way switch based

on the value of an integer variable, The statemoent has the formi

GOTO (n:‘.,nz.........f.,rm),i

where nj, N3, N3, Bg. . .y Dy @arem statement numbers (v.rhit::h need not all
be different) and i is 2 un-subscripted integer variable which, whenever

‘the statement is obeyed, must have a value in the range 1 to m.

o : S o Page 32

Example:
GOTO {4,600,13,9,526}IAC
if the value of JAC is 1 then contrel would be transferred to statement

4, i JAC had the value Z control would be transferred to statement 600 and
so on. If the value of the integer variable lies outside the range, at run

‘time an error is reported.

3.4.5 Agpignment Statement and Asgsigned GOTO

The combination of the GOTC Assigmment statement and the Assigned GOTO
gives an alternative to the computed GOTO. A statement label (number)

is associated with an integer variable by means of a GOTO Assignment,

At some point later in the program this may be used in an Assigned GOTO
statement to branch to that numbered statement. [n programming terms,

it is a means of presetting a switch,

A GOTO Assignment takes the form:
ASSIGN K TO 1

y.rhere K is a staternent label of an executable statement in the current
program unit,

i represents any integer variable.

Once the Assignment statement has been obeyed, integer i must not be

referenced or changed until an assigned GOTO is obeyed. That assigned
GOTO will cause control to be transferred to the statement numbered K.
The form of an assigned GOTO is . . '

GOTO i, (K1, Kz, K3,......, KpJ

where i is an integer variable that must have been previously set by a
GOTO assignment, Kj.....K, represents statement numbers {one of

which must be the label number K used in the ASSIGN statement).

i
| .

Note 'that the value set in i is not meaningful, in particular it is not the

rumerical value of K.

The ASSIGN statement and its aszociated GOTO statement must be in the
same program unit. '

Exaﬁlplgz)
ASSIGN 99 TO JJ
GOTO 10

99 X=Z+Y

10 GOTO J3J, (97.98,99,100)

Ti\e equivalent ¢ m:‘zpuicfi COTO wounld e
F2=3 o
- GOTO
99 X=724Y

10 _GOTOC“ 98, 9

in 905 FORT seled oat oy
to ensure t?‘-ﬂ;f‘ i i range Tranafer
g in A shovier

of contyol,
time, than a c')”\}JutEd GO

3.4.6 The Arithmeti

An Avithmetic I

IF (e} ny. my, 3

where (e} is an arithmetic expression & ,
numbers (not necessarily different}. Control Is i

nj, ny, Or n3z according to the sisn of t
sign of e _ _ .
NEGATIVE - n
ZERO n;
POSITIVE n3

Example: 7
53 I {NX-2) 150, 151, 999 , - : .

3.4,7 The Logical IF Statement and Liogical Statems

A logical IF statement is written in the form:

IF {e)S

o~

where {e) is 2 logical exnression and S is any other executabl

& h ¥
except an IF or DO statement. The simplest form of jo-vical expression
is one that asks a question about iwo arithrnetic expressio:

C‘
)
[#3

The course of actientakenby the logical IF statement is as follows:

If the logical expression is true statement 5 is executed:
If the logical expressicn is false, staterment 5 is not exscuted. The neaxt
nle

(’h

staternent executed is the one following the logical IF u
and the expression was true.) '

The power of the logical IF statement can be heightened by the inclusion of
logical operators these are writien in the form:

¢« AND.

.OR,

.NOT,

A logical expression combines logical values and/or relational expressions.

A relational expression is one that comparcs nltcber, real, or deuble
precision values by using relational operators.

- .- e,

T | S Bege 34

Relational operators are written in the form:

Relational .

Operators Meaning

LT . Less than
.. LE. | L.ess than or equal to

L EQ. ‘ Fgual to ' .
.NE. ' Noge’/equai to

GT. ; . Greater than

.GE. ' Gresgter than or equal to

A logical assignment staternent is written in the form:

Liogical variable = logical expression

If L1, L2 and L3 are logical variables, the logical assignment stzatements
written: .

D.LT.EPS.OR.ITER.GT. 20

Ll =
2 = D.GE.EPS.AND.ITER.LE.20
L3 = PBIG.GT.TOLER.OR.SWITCH

would agsign L1 the value , TRUE, if either or both of the relations were
true, and . FALSE. if both the relations were false.

L2 would be given the value . TRUE. if and only if both the relations were
true, ' ' :

1.3 would be given the value . TRUE. if the relation was satisfied and/or
the logical variable SWITCH was true, o

The logical operator .NOT. reverses the truth value of the expression in
which it is declared.) '

The .AND., .NOT, and .OR., .NCT. combinations are the only ones in
which two operators may be declared adjacent to one another.

An example of usage of the IF statement follows. The arithmetic preblem:
0.5X+0.75 if X¢3
0.27%+0.12 if X>3

i

Yy

H]

Y

can be accomplished by combining two IF statements thus:.

IF(X.LE. 3)Y=0.5%%+0. 75

IF(X.GT. 3)Y=0.25%X+0. 12

1f X is less than or equal to {. LE,)3, the statement ¥Y=0, 5%X+0. 75 will
be execcuted which is the correct formulae {or computing v in fhat cuase,
If X is greater than {GE.} 3 the first IF statement is non~execuind, buf
the second IF statement is.

* - Page 3%

]

3.4.8 CONTINUE Statement

A CONTINUE statement is a dummy (executable] statermnent that causes no
action when the objest program is executed. It is mainly used at the end
of a DO statement to satisfy the rule that the last statement in the range
of a DO statement must not be one that can cause transfer o 1

1
f control,

3.4.% DO Statement

_ This statement makes it possible to execute a section of a program re-
= peatedly with automatic changes in the value of an integer variable
betwesn repetitions. It is written in either of the forms:

oo n i = mjy, m,

Do n i = mjy, nﬁz, m3y

- where n = stalement number of the last staternent to be
obeyed before attempting to repeat the loop with
"a new value of 1.

ungubscripted integer variable written without

P
[

a sign.

m; = the value to be assumed by i the first time the DO
loop is traversed.

my = must be greater than m) and is the greatest value which
_imay assume (It need not be attained nor, if m3z3pl,
need it be attainable). '

mq = is the constant interval of the arithmetic progression of
values assumed by i (must be20). '
If this value is ommiited, the vaiue 1 is assumed.

‘m3'is added to i at the end of each traverse of the DO loop. If the new
value of i is€ mj,, the loop is traversed again, otherwise the loop is
terminated and the next executable statement is obeyed.

mj, mp and m3 may be unsubscripted integer variables or integer
constants,

When the DO loop is left (because if i were again incremented it would
exceed m;) the value of i is undefined. However, if the DO loop is left
by means of a GOTO statement then the value of i is presexrved.

The values of i, m, and m3 may not be altered within a DO loop. But for
one exception a GOTO statement may not cause a jump into a DO loop
that by-passes its initial DO statement. The exception is when the DO

- loop is itself left by a GOTO and the values of {, mz m3 have not been
altered: since, a GOTO statement may be used to re-gnter the DO loops.
DO loops must have the following properties: ;

(1) “PThe first statement must bean executable statement.

(i) They may occur within DO loops.
(111} They may not infersect each other.
(iv) © Terminating statement of a DO loop must not be 2 GOTO

statement (including IF statement) nor a RETURN, STOP,
PAUSE or DO statement. When this aituation is required
a CONTINUE staternent should be used. ’

The follewing is an example of correctly nested DO loops

DG 3071

HI
P
[
o]

no 3073 = 1, 30, 1
DO 314 INDEX = 5, 15
A(I,J) = A (I,I) - B INDEX) - | ;_

DG 330 INDEX = -10, 0, 3
DO 329 K= LLB, 12 .
Ir (B{INDEX+10)) 345, 329, 345

329 A [TNDEX+10,K) = 0
330 CONTINUE

CGOTO 307
345 | _Cv ={i 41
GOTO 329

307 CHTINUE ' _ .

3. ":_". }.G T\; USJ—P uta_s,ﬁme*lt

ent thatcauses the computer fo wait until the operator
iztion is to continue., The programmer should usually
rernent which causes a message to be displayed informing
some special action to be taken (e.g. load next data tape).
followed by up to 5 ocial digits. These will be displayed

Page 37

- 3.4.11 STOP Statement
An executable staternent which catses the computer to abandon the
current caleulation. The program cannot he continued, but it may
remain in giore, o ihfu‘ it can be re-enterad at the beginning with a

ew get of data. In automatic eperating svstems STOP will cause "he
4 1
crogram o be thrhycd and lost from core '
2 ,
{ .
!
3.4.12 END Btatement
' [.
:i)
An executeble statement which
— .. i‘
(i34 Informs the.compiler that it has reached the
i .
' physical end of the program or sub-program that it is currently
i
: : i

{ t ranslating.

i
I

. RETURN Statement
An executzhle statement which may only occur in a sub-program, indicates
-prograrn has completed calculation; and so control is to be

the sub ¢
urned to the program or sub-program which called it (1 e. at the

that
rat
executable statement following its call}.

"Page 38

CHADTER 41 SPECIFICATION A’\L_J DATA L,Tﬁyr:f:m-u T3

Five types of specification statements are permissible in Q0% FORTRAN.
¥ I P

They are:

a) . DIMENSIONS statements 7 -
~ bj COMBMON statements
Coe) - EQUIVALENCE statements
d) EXTERNAL statements

-) The various '"Type’ statements, i.e. INTEGER, REAL, DOUBLE
o PRECISION, COMPLEX and LOGICAL. .

- DATA initialisation statmments are also considered. in this chapter.

and DATA siatements are said to be 'non-executable’ i, e.

rovide information tc the FORTRAN compiler and do not directly

-ention of instructions in the program to be run.

ne or more identifiers

A DIMENSION se

are the names of arravs {subscripted variables). The statement is of the
- . _ ;

i0

se of values for that subscript.

¢ ¢ indicating that v is a one dimension
av be referred to as?

ry [¢ elements, which ma
(1 v-(Iﬁu.......vi'c's, or S -
indicating that v is a.

which may be referred

........ Loovlersen)

0
9
W]
¥
jn]
o9
o
]
W

ng that V is a
nts W c‘z may be

8]
L

if, aud only if v is the name of anexpress formal parameter of a sub-
(1 can 11‘(‘1\,‘(&_ the names of one, two or three

—_ (Section L 7} .

,.
+
P
o
L7
d
o
[
oo
L"}
-
ot
n
J—t
—7
Ay
N
g
i
foms
feh]

), B{5,15), CAT{99)
— - b) | DIMENSION A(1}, B(5,7),C(L,J)

€ ey n = - . s = - a
This could enly occur in a sub-program which numbered B,C,1and J

— : -L-mc"ng its formal p?1anmt°rs See Section 4.6 for further examples of

I}EJSIxS“E}\ statements.

- 4.2 CO&.‘_:’O“E tatements

: . it has been stated that each pregram unit has its own variable names;

- ihe name X in the main program is not necessarily taken to be the same as
the name X in a subsprogram. Howevér, if it is necessary for the values
of both ¥'s to be the same, a COMMON statement (written in both the main-

- , and-sub-program) can be used.

A COMMON statement is used, in general, to communicate data between

o program units (main programs, SUBROUTINES and FUNCTION subprograms}).
It informs the compiler that a list of variables and/or arrays in one

program unit is to Share the same block of core store as a similar list(s)

of variables/arrays in other proéram units.

A COMMON statement takes one of the following forms:

COMMON list e.g. COMMON A,I.K, LAMBA
Oor
= COMMON/x/listy/x2/1listp/ [xpflisty

e.g. COMMON/BLOCK/B,J, X/BLOCKZ/Z, KK

- This second form is described more fully in 4.2.1. The first form

describes a block of store locations termed 'blank’ or 'unlabelled' common.
, The compiler allocates this block of store and assigns the list of variables/
- arrays to this block in the order they appear in the list.

If there is another COMMON statement in the same program unit, the
- first item in that staternent is allocated store following the last item in the

previous statement.

- The list or lists may consist of: variables of any tape, array names of
any type, or array declarators of the form V{i). V(i) takes the same form
and same meaning as the V(i) in & DIMENSION statement, see 4.1.

It is often convenient to have the same identifiers used in the corzesponding
positions of COMMON lists in different program units. However, there is
no nieed for the names to be identical; only their order within the COMMON
listis important,

4.2.1 COMMON Statement with Named COMMON

Apart from the block known as blank common area, there may be one or
more labelled (named) common blocks. Tha names of such blocks are
identifiers chosen by the programmer. In choosing the name the
programmer must not use the name of any program unit {FORTRAN or
MASIR) or intrinsic function; there are no other restrictions (The
‘name has no implicit or explicit type, and it can even be the same name
as a variable in the program, without having any relationship with that
variable). The compiler uses the name of a common block only to allocate
the block to the same core store area as common block(s) with the same
name in other program units.

‘\Iamed (or labelled) common olocks are described by the general form of
COMMON statermnent:

COMMON/x /listy/xp/listy/ Jxp/list,

Example:

COMMON/BLOCK/A, B, C,%{20), Z{10, 10}

Each x is the name of a common block. If a name is omitted bci w2Een the
slashes, the corresponding list describes blank common.

Example:
COMMON/BLY/X, Y/ /1,3(20)

Iand J are in blank common.

— If the blank common is the first described, the two slashes may be omitted,
for example: S S PR

COMMON I,J(20)/B1/X, Y

]
)

would have exactly.the sam

- If a nénmd or blank common b
statement in a single ‘::*"Og?’ar:'«. 11
in the order in which they app

- the positions and total size o

Within one complete C}CP‘CLItaLJ‘. 2 nrogram, the si
block must not be great T it tha
first unit, encountersd by the IL.ossdar, in which it occuys
warning is printed if the sizes sre not the same. There is, howsver, no

.

such restriction on the Slze of tha blank cornrian arca,

were writlen in a mainprogram

COE Z}\.ﬂ() A, k&

COMMON R,

the prozram con-
containing the second

3 stor agr" location

as would B and !

establiesh DD and : Yo he game location
(assaming all the foregoing variables ware mi entioned in & DIMENSION

statement elsewher ogram contains ihe 20 siem ents of

F and ‘Lx 10 elemne
the 10 elements :
four arrcys involved would cause the compiler no difficulty (‘m "Qm{p

s %

ons would 2i1so conta
. The overlap between t},e
iler

3..
i
o]
+
o
0

would not need to even consid

EQUIVALENCE statements are written in the form:

EQUIVALENGE (kq) (Kg)s« - - - kn ,

where: B '

each k is a st of the form: -

B1:@p,83, 000 .n.s .a, eacha is the name of a variable or an array

element.

An EQUIVALENCE statement assigns two or more variables within the
same main program or within the same sub-program to the same storage
location.

If one large array is to be eguivalenced to one or more small arrays
and all are to be in COMMON, the larger array must be declared in
COMMON and the smaller not explicitly declared in COMMON.

An example of an BQUIVALENCI statement is gzvan in gsection 4.6.

o=

The array element name must have only constant subscripts. If is
possible to use a single constant subscript for an array with two or three

dimensions e.g.
DIMENSION A{3,4)
EQUIVALENCE {3, A(5)) .

This would cause X to share the same store locations as element A(2,2).

If two variables occupying different numbers of computer words are
equivalenced together, the first word of each variable occupies the same
storage location. C '

e - . Fege 42

The effect of an EQUIVALENCE statement may add a variable or an array
to a common block, This may cause an incvreas¢ in the size of the common
block. However, an EQUIVALENCE statermnent must not extend a common
block ‘backwards! i.e. alter the pogition of the first variable or element in
the block.

Examples:

DIMENSION A{20)
COMMON/BX/X
EQUIVALENCE (X, A(1))

are valid, and would cause block BX to occupy 20 store units (i.e. 40 words),
but:

EQUIVALENCE (3, A(2)) -

would be illegal, since X is the first location of BX, and this would put

A(1) before X. : , j
4.4 Restrictions on Sequence of Items in Egquivalence Group

In an BEQUIVALENCE group {i.e. a set of parenthesised ifems in an
EQUIVALENCE statement), there are two restrictions on the sequence of

items, they are!

1) If a group of equivalenced items includes an item in COMMON,
that item must be the {irst in the group.

2) If the same appears in more than one group, that name must
‘appear at the beginning of the second and any subsequent group
in which it appears. - ’ - :

4.5 Réﬂtrictione on Namss in S_pacificat'ion Statements
Within a single program unit, 2 name may occur in any or all of the
following statements::
DIMENSION
COMMON

Type statements
The following rules are to be observed:

1) . A name may not occur in any of the forms of statements given
in the previous paragraph more than once.

' 2) A name may not be declared as an array (by having dimension
inforrmation) in more than one statement.

3) A formal parameter {dummy argument) must not dppear ina
COMMON or EQUIVALENCE statement,

Page 43

A
.

4) The name of a COMMON block must net correspond o the name
of any sub-program whether in FORTRAN or MASIF.

4.6 Examples of Statemants

fn relation to the store map given following this paragraph the specifi
in program CAT are:

SUBROUTINE CAT

DIMENSION A(5), 1{3, 2), B(2)}, L{3}

COMMOMN AL .G ‘

, COMMON K, LL

coupled with the specif fication sub- -program DOG {see map):

L . SUBROUTINE DOG

DIMENSION TAIL(6), }_.(3)

- COMMOMN EAR,BARK, TAIL, F, X, BK
EQUIVALENCE (BX, L(1)}

= this would lead to the allocation of space {in the first 2% locations of the
COMMON area) indicated inthe map below assuming the '"packed integers®

- ocption was in use.
LOCATION VARIABLES DECLARED IN
i CAT DOG
COMMON } A(1) EAR
..... o N
,.\
: +2 .
+3
4 S AN |
‘ A(3 TAIL(1 ;
s (3) [(1)
; | +6 } Af4) } TAIL(2)
+7 :
- +8 s
_ ‘} A(5) } TAIL{3)}
+9 - g
+10 | (1, 1) TAIL(4)
+11 (2, 1)
- +12 1(3, 1) l _T_AI.IJ{S)
T +13 i(1, 2})

; S | Page 44

LOCATION VARIABLE DECLARED IN
- 4 . CAT : DOG

+14 iz, 2)
+15 1(3, 2) TAIL (6)
16 1 } .
+17 ") : . g
+18 } G K of DOG
+19 A K of CAT } S L)
20 j LL BE 1)
+21- o T OL(3)

4.7 Usge of Store Map

Programmers using COMMON and EQUIVALENCE are advised to prepare
a store map similar to that given in section 4.6 Eiffecrs like the overlap
of J and G of CAT with F and K of DOG are not erronecus, Lut their effect
is unlikely to be that desired by the programmexr. If used correctly,
COMMON and EQUIVALENCE statements save space and simplify the
calling and constraction of sub-programs. If used incorrectly, they -

can cause chaos.

4.8 . Type and EXTERNAL Statement
4.8.1 Type Statement

These consist of one of the declarations:

i
INTEGER

DOUBLE PRECISION - o -
COMPLEX |
LOGICAL

followed by as many variable names as necessary {separated by commas).

DOUBLE PRECISION DENOM, REVX, T‘?RM N

COMPLEX T,N1,N2, D1

LOGICAL AL AZK

A'type statement is used to inform the compiler t’*xat the given names are to
be associated with variables of the appropriate type. In the case of Double
Precision, Gomplex and Logical variables a Type statement must be used,
For real and integer variables a Type statement may be used to overr ide
the implicit type suggested by the [irst letter of the identifier.

The Type statement must precede the first use of the name in any executable
statement in the program. In the examples, the I from the INTEGER state-
ment and the variable X from the REAL statement may be omitted since

‘the names are identified integer and real respectively, by their first letters.

4.8.2 &~ EXTERNAL Statement

An EXTERNAL statement has the form EXTERNAL ¥1,X2,.X3,.... X,
where each ¥ is the name of an external subroutine or function.

905 FORTRAN permits the use of a function name as an ar gument in a
sub-program call. When this occurs, it is necessary to list the function
name in an EXTERNAL statement in the calling program to distinguish
between a function name and a variable name,

Example: : _

- EXTERNAL SIiN,COS, SQRT
CALL SUBR (2.0,S8IN,RESULT)
WRITE {6, 129)RESULT

129 FORMAT (10H 511\?(2.0):,?10.6)

| . CALL SUBR (2.0,COS,RESULT)
WRITE(6, 130)RESULT

130 FORMAT(10H COS(2.0)=, F10.6)
CALL SUBR(2.0,5QRT,RESULT)
WRITE {6, 131)RESULT

151 FORMAT(11H SQRT(2.0)=,F10.6)
STOP |
END

SUBROUTINE SUBR(X,F,Y)
Y=F()
RETURN

END |
- e 46

This program contains a main (calling) program and a SUBROUTINE
sub-program. The program contains oniy one executable statement viz.

Y=F(X)

The arguments listed are X, F and Y making the function F a matter of
choice in the sub-prograrm call. The main program calls this sub-program

" three times. FEach time the value of X is 2.0 and the actual variable

corresponding to ¥ is RESULT. The arguments corresponding to I are
successively SIN, COS, SQRT; these three supplied function names are
listed in an EXTERNAL statement.

4.9 DATA Sfat_tement

The use of the DATA statement is brought about when it becomes necessary
to couple data {from the source program) into the ObJECt program. DATA
statements take the form:

DATA list/{dy,ds,d,/, list/dy,dp, Kdg. ..o 0L d
2 n 1 3 m

In this symbolic description a 'list' contains the names of variables to
receive values, the d's are values and the K (if used) is an integer constant.

Example:
DATA A,B,C/14.7,62.1,1.5E-20/

This statement would assign the values 14.7,62.1 and 1.5 x167%% o AB
and C respectively. This action is performed at the compilation and not

at the time when the object prograim is ex ec,uted

The values assigned by f:he DATA statement are placed in storage when
the object program is loaded and that is end of the actions required by the
DATA statement. '

It is legal to redefine values of these variables but having so acted it is
not possible to re-execute the DATA statement to put the variables back

to their original value.

The two statements which follow have identical meanings, choice of |

statement is 2 matier of personal preference: _ : I
DATA A/60.75/,5/10.0/,C/5.0 - . 7
DATA A,B,C/60.75,10,5.0 : '

Any of the constants may be preceded by a multiplier, that is an unsigned
. . ‘1 ;

positive integer constant and an asterisk, If the multiplier has the value n

this is equivalent to writing the constant it precedes n times.

Example:

DATA X,Y,Z, W/3%0,0,1.0/

o~ 1 ‘
Page 27

This will cause X, Y and Z to have initial values of zero, and W to have a
value 1,0,

NOTE: If these values are changed, they will only be reset if the
' program is rcloaded into core stove.

The staternent which follows assigns the value 10,5 to 21l five variables:

DATA A.B,C,D,E/5%10.5/

A DATA statement maycontain Hollerith text, for exam?le:

DATA DOT, X, BLANK/1H., 1HX, 1H/ '

If the number of characters of text is not the same as the number of
chavacters in a storage location, the characters are left justified and
space filled. In the exaruple given, the point would be left justified in
DOT and the remainder of DOT filled with blanks: X would be similarly
treated. BLANX would be filled with blanks as intended. o

The iterns in the list must not be in COMMON {blank or named}), nor can
they be formal parameters (dumrny arguments). They may be subscripted
variables with constant subscripts. :

4,10 Restrictions on the Sequence of Items within a Subprogram

In 905 FORTRAN the statements which make up a program unit must
appear in the following sequence. . ' '

1. SUBROUTINE or FUNCTION (except in a main program)
2. Specification statements

3. DATA Statements

4. . Statement function definitions

5. Exec&ztabie statements, FORIVLAT statements and in-line

machine code.

6. - END statement

CHAPTER 5: INPUT AND CUTPUT

To read input or write output data requires the programmer to declare
four categories of information in the source program, They are:

1) Selection of input or output device, which is handled by a combinae
tion of the sgtatement verb and the unit des1gnation.

2} The variables te which new input values are to be desighated oy
whose values are to be sent to an cuiput device, These are specia
fied by the list of variables in the inpat or output statement.

3) The order in which the values are tc be transmitted, is governed
by the order in which the variables ave ramed in the list.

4} The format in which the data appears for input, on is to be written
for output. This is specified by 2 FORMAT statement which must
be referenced by the input or cutput statement in all but a few

‘special cases (see Sect, 5.4)

5.1 Input and Output Statements

Input and Qutput statements take the form:
READ (u,f) k or READ {u} k
WRITE (u, f) k or WRITE (u) k

where u represents an integer constant or variable md;cc.img a. devzce
(see table which follows}.

- f represents the statement pumber of FORMAT statement (see
' Section 5.4). If 'f' is absent, statements are known as
unformatted; otherwise they are known as formatted. The name
— of an array may be used in place of f {see Section 5.7).

k represents a list of items to be input or output. The list may
contain variables, subscripted variables, avray names and
DO-~implied lists.

The value of u rmust be in the range 1 to 10,

Page 49

Value of Devics rotn . - - ..w:
R u READ Siatcinent
- 1 Paper Tape *7 PaPéi‘ ’if’% #
z - -
3 Teleprinter *
4 -
. 5 _ 5
6 - -
- 7 . Card Reader BT
- ‘8 - -
o 9 Dispiay Heyboard \ Dié};sla.y' Screen
5 10 Speciai Devices Special Dev

— The standard run-time package for paper tape
' marked * pre-set (i.e. automatically availabic
other number in the range 1 to 10 ie diverted %;'q BaD

—- {using READ Statement) or punch {using WRITE Statement). If any other

numbers are to be used, the device routines should be set hefore obeving

: the READ or WRITE statement e.g. a2 call of QLPOUT seis-device numbe
- 4 for output of information to the line printer. Device anumbers 10 for input
and output is reserved for special on-line devicesnormally interfucad by

the user) and will not be used for any standard 1.a&dw¢ ¢ parviphersal
5,2 The List of an Input or Qutpui Statement.

The simplest type of list is one in which all the varial
explicitly and in the order in which they are to :

fundamental idez of 'scanning' carries througl: the
associated with the first variable name and firsi field specification (in
the associated FORMAT statement), and so on.

ie not necessary to name edch element e}_ph When tranzrgitting an
array, it is only necessary to name the array in a list

subscripts. The name of the array must appear zlsewhere in 1be program
in a specification statement that gives dimensicning information, but in
the list it need not carry any subscripting information. The elements may

(but need not) have the same field specification: this one fieid specification
may be given by itself in the FORMAT statement.

For example:.
DIMENSION A(10, 5)
-WRITE (6, 21)A

21 FORMAT (IPE20.8)

would cause ocutput of 211 50 elements of array A, one to a.line (in 1PE 20.8
format).

When an entire array is moved this way, the elements are transmitted in
a sequence in which the first subscript varies the most rapidly and the last
. subscript the least rapidly.

) /

When only some of the array elements are to be transferred or when the
‘natural order' just mentioned is not required, it is still possible to avoid
narming each element explicitly. The elements can be specified instead in
the list required in a way that parallels a DO loop.

Example: ’ - , ;

. i
Suppose the array 'BLOCK' has 90 lecations, in the form of 15 rows and
6 columns, of which oaly 24 of these are required for output. These
locations are located between rows 7 and 14 and columns 2 and 4. The
WRITE statement could be in the form:

- DO 50 =17,14

DO 50 J=2,4
50 WRITE(3, 51) BLOCK(I,)
51 FORMAT(3I6) .

With DO-implied lists this could be written:
WRITE (3,51) (BLOCK (1,J), J =2,4), 1 =7,14)
51 FORMAT {316) -

————— = In generala list of 2 READ or WRITE statement can be made up of variables,
subscripted variables, array names and DO implied lists. If there is
more than one item in the list they must be separated by commas.

A DO-implied list is raude up in the general form:
(List, I =m,, mp, my)

where I represents any integer varialle and mj, m,, mj3 have the same
meaning 2s ina DO statement (Chapter 3).

The 'List' may be made up of variables, subscript variables, array names

. and DO-mplied lists; which means that DO-implied lists can be Hhested!,
as shown in the previous example. The innermost DO-implied loop 1s
execuied most frequently. '

Page 51

5.3 Effect of Ruwsic IZeme in READ and WRITE Lists

Item : Tffect in a READ Eifect ina WRITE
- ‘ : Iist _ Iist
A simple var- A number is input The value of the variable
jiable (which from: the specified | in output té the specified
does not occur device am itg device
in a value is assigned '
= DIMENSION to the variable
statement)e. g.
- ‘ A subscripted Asm for a simple b Az for a simple variable
: variable variable {Sece (see Note 1}
i 1 e.g. B(7,1) Note 1) 7
The name of a ‘The approprizte he value of the elements
DIMENSIONED i number of values is of B are output in order.
- variable read from the speci- = .
’ fied device and they
are assigned, in)
- order, to the elementg
of B
NOTE: The identily of the items in a READ or WRITE statement is

e ’ determined bw re the values of any itemn in that list are input
or cutput. Conse quently if the next two items on a data tape are
3 and 3.14159, the effect of

I=7

READ(I, 1, A(I.)

&
is to assign the value 3 to I and the value 3.14159 to A(?) {the
value of A(3) will remain unaffected).

5.4 FORMAT Siatement

. The function of a FORMAT statement is to declare how information is to

' be arranged either on input or cutput. To each value transmitted there rhust
correspond a field specification which lists the kind of information and the
layout details of the va}ue contained in that ficld (in terms of its internal
representation and what it 'looks like' externally),

5, 4,1 Genc::ad Forrm of FORMAT Statements

The form generaliy used for a FORMAT statement is the word FORMAT,
followed By a list ne or more items enclosed in parenthesig, that is :

FORMAT (List)

Page 52

In 905 FORTRAN, 'List' may consist of the single woxd FREE which
indicates free format for use on input only. FHowever, standard FORTRAN
does not include this facility since FORTRAN was mainly used in a card
inpul environment. When data is input from cards, each item is normally
punched in a fixed column width with a fixed number of items per card.
IIsing paper tapeinputitmaybe inconvenient if the value 2.0 has to be filjed
out with 10 spaces because the number 12345678E-5 has to.be punched ina
corresponding data field. For sirnilar reasons, it may be inconvenient to
always have z fixed number of items per line of text. Thereiore 505
FORTRAN allows both fixed (standard) and free format input.

Example;
READ{1,7} 1,7, X, Z
7 FORMAT(FREE)

Y

vwill cause the wext four numbers to be read from a data tape, and assigned
1,7, X, Z with the corrvect value type (see Section 5.8 for further details
of frec format input). Ozn output, it is both convenient and essential to
epecify how many character positions are occupied by each item output
and the foTm o:"‘ output e, g. floating point or fractional , number of signifi-
cant digits etc.. ‘ . .
Standard FORMAT statements thus consist of a set of field descriptors
which specify the width of a field(i.e. the number of character positions
on the external s edlum) the Lorrespondl g type of internal representation
and other necessary information for output control. When a READ or
WRITE corresponding to 2 FCRMAT statement is obeyed, each
item presem {or implied) in the READ/WRITE list is matched against a
fizld descriptor in the FORMAT list by a scanning process which works’
sts in parallel.

;.4

through bo 1 lis

Spscial rules ara used to:

i) avoid repeatedly writing identical field specifiers

v READ/WRITE I‘bt.—,whentbuy are longer than the
_FG'L«EAT staternent lists.

' | f'
Yach field descriptor implies a conversion between a2 number or a group of
characters represented on an external medium, and an internal représent-
ation of the sarne item within the computer, The internal representaﬁ;ion
may congist of binary numbers, packed internal cede characters, fldating
peint ete.. For most purposes, the programmer only needs to Le aware of

the type of internal representation av ailable i.e. integer, a.l Hollerlth
etc.. The external medium may be paper tape, teleprintef or any pther
character handiing device with suitable software., /

A perneral FORRKAT list is made up of field descriptors separated by
field °eparat'- rs {either commas or slashes). Field descriptors

ousist of ons of the lefters 1,77, E,G,D,A,H, X, L followed by either

(3

vmmber or chavrac

e I descry; »rar to (:-J """ rol infeger conversion. | ‘ X

r"f' :’-j

1

Page 53

f'*r‘s conveying special infermation. For example, using

WRITH{L, 99)1, 7
99 FORMAT{I2, 14)

would cause the two integer values in [andl J o be output in fle

and four characters respectively.

5.4.2. - Repeat Counts

(<)

All the descriptors except X and H may b preceded by & rapes
indicating that the descriptor is treated as tho & i

T

Example:
FORMAT (315)

is eqﬁivaien{' to: FORMAT (15, 15

..
Ll
W51

ey

A group of field descriptors may be enclosed in parenthesss to make &
basic group (Tbe basic group may be preceded by a repeat count).
separators and basic groups may be further grouped by enclosing in
parentheses with a repeat count. The “nest’ of groups must not e more

than two in deptn.

-

Tield

j—

Example:

FORMAT (2(16, 3(14, 13)))
is equivalent to: '

FORMAT(16, 14, 13, 14, I3, 14, 13,16, 14, 13, 14, 13, 14, 13)

If the READ/WRITE list contained more than 14 integers, these statements
would not have exactly the same effect (see section 5. 4.3}

5,4.3 Extereal Recorde and Newlines

Apart from separating text, the separator / (slash) is also used to starta
new record {for punched card input a record is defined as one card}., In
general, a record on paper tape is a string of characters (text} followed
by newline, although the FORTRAN standard does not clearly define this.
In §05 FORTRAN, the separator [in a2 FORMAT statement causes on
output a newline sequence to be punched, and on input causes gharacter
to and including the next newline (linefeed) character to be skipped. The end
of 2 FORMAT statement scan, when the last right parenthesis is reached,

produces the same effect.

s up

There may be more than one slash between field descriptors indicating
multiple newlines, and a group of slashes may be used at the beginning or
end of a FORMAT statement.

Ex.ampl'e: i
WRITE(3, 97)L.T | |
97 FORMAT(/[13/14 /) ' SN

5.4:4 Field Descriptors Available

¥ Lw’

‘v Aw :) -

This would cause Gutput.c)f two newline sequences, a three character integer,
newline and a four character integer followed by two newlines. Qf the last
two newlines one is causes by / separator, and the other by the end of the
FORMAT scan.

Ifinthe par}'{iﬂel scanof a FORMAT statement and READ/WRITE list, the
former list is exhausted before the latter; fdrmat control returns to the
beginning of the FORMAT list, or ifthere are nested groups of descriptors,
to the repeat count at the start of the group which ended most recently. In
either case a skip to a new record or output of new line occurs.

Example:
WRITE(L, 999)M, ((IA(J, K. T = 1, 2), K= 1,3)
999 FORMAT(I6, 2{ /13,14))

causes cutput of the values as follows:
M

TA(L, 1) 1A(2,1)

1a(1,2) 1a(2, 2)

cxtra newline for
end of format.

1A(1, 3) IA(2, 3)

Inay :

There are nine field descriptors available in 905 FORTRAN, which are
written in the following symbolic forms: '

rEw.d

i}

er\-v.dr

srGw.d
srDw.d

* Tw .
i ,

nH hy, h2,hy,...... hy

n X
where:
5 represents a scale factor in the form KPP which can be ornitied il not
required (k is an integer constant, optionally signed)
T represents a repeat count which may be emitted if not reguired. It is
written as a positive unsignsd integer constant.
in chaevacisrs.

w represents the width of the field on the external medivm i
It is written as an unsigned positive integer constant.

1o

[

R venresents the nurnher of dirits after the decimal point in a real or
t i 8

Cdouble precision number. 'd' is an unsigned positive integer.
- 2 g P b4

pit represzents the number of claracters in a field.

The effect of the varicus number descriptors {I,F,E,D, G) on input is

Il Mg Caped

where | is an unsigned positive integer constant. or a signed negative integer
’ 3

constant. Once a scale {actor has been specified, this factor will apply to

11 ¥, B, G and D ficld specifications which foliow(in the rest of the FORMAT
statement processing), unless cancelled by another scale factor. An implied
scale factor of zero is sef up when a READ or WRITE Statement commences.

ct
A scale facior has no effect on I, L, A, H or X specifications.

A non zerc scale facter has different effects on input and output, On input,
for ¥, E, G and D specifications if there is an exponent in the input field,
the scale factor is ignored. If the external input field does not contain an
exponent, the internal number = external number divided by 108, where n is
the scale factor. : ‘)

For the effect of scale factor on output, see the separate descriptions of

F, E, G 2and D specifications. '

5.4.6 Isput of Numbers Under Format Control,

Nurnbers are inpat under format control (as opposed te free format} by the
descriptors I, E, ¥, G, D. In each case a field of w characters is input,
that is the next w significant characters are read from the external source.
Line feed {newling), carriage return, null and erase are all ignored by the

cormpiler.

For integer conversion I the external field must'be in one of the forms
permitted for integer constants (signed or unsigned).

Fcr real and double precision coenversions (E, F, G and D), the external
field may be signed or unsigned, with a string of digits which may Or may
not contzin a decimal point. These digits may, but need not, be followed
by an exponent in one of the following forms: ' ‘

A Example of complete number.

+ integer constant : .060‘3-%«3

- integer constant 7 0.000-1

© integer consgtant) 0.009E2 .
E signed integer constant - 90. 0E-2 o ‘

(i) 9 FORMAT (16)

between an internal real value and an exiernal r-umbe" v-‘ritt-&n W

D integer constant : . 009D 02
D signed integer constant bb90D -2
(No exponent) . ' 0. 9bbbb

In the examples b represents space {(blank). All these numbers could be
input under control of ¥7.0 to give the same internal value,

If a decimal point occurs in the field the d value is ignored. If an exponent
is used the number is raised to that power of ten, and any scale factor
ignored. If there is no exponent, the internal number = external number
divided by 10T, where ¢ is tha current scale factor {zero if none specified).

Spaces {blanks)are significant in formatted input, they are treated as
zeros. If spaces occur at the beginning of the field they are generally
regarded as non-significant zeros, but at the end of the field they may
have some effect, particularly if there is no decimal point or if there is an
exponent,

An all blank field represents zero,
5.4,7 Field Specification I {integer)
This takes the form Iw where I spacifies convers bet{veen an internal

integer and an external decimal inteéger, 'w' ‘mfc'i' s the totail number of
characters in the field, including any sign or blanks '

33
ot

Examples:

READ (1,9} 7
On input this would cause 6 characters to be read from paper tape, con-
verted to integer form and stored in variable J. '

(ii) J = -987 o L o
WRITE (3, 9)J o o T o o
. . L]

On output this would czusze the number -987 (o be cutput on the tele-
printer, with two spaces, a2 minus gign and digits 987 (a total of six
characters). _ :

5.4,8 Field Specification ¥ gi-.-erx,‘t {ived point) . LT

The form of this specification iz ¥w.d,where F indicates conversic

exponent. The letter w
field, including sign, decimazl point and any a}aﬂks, d "pec‘ i
of decimal places after the decimazal point, :

or the effect of I fermat on in*\u sea 54,0, On cutput, there will be
For ti ffect of ¥ f t it, 5.4.6. © tput, P
d digits to the right of the decimal poidt (Epaces are inserted for leardi:
zZeros).. - . -

{y
e

- nurnber

The scale factor may be used with the F {ield specification by writing the
gpecification in the form:
sPriw.d
where s= scale factor (scale factor may either be positive or negative)
r= repetition number
The effect of scale factor on output is that: external nurnber = internal
#3108,
5,4.9 Field Specification E (Floating Pemt)
The form of this specification is Ew.d where E specifies conversion
berween an internal real value and an external number written with an
exponent. The total number of characters in the external mediuom is w

)
inciuding sign, decimal point, exponent and any blanks. The number pf

decimal places after the decimal point (not counting the exponent) is |
specified by 4. i
Example:

Y = 1.5E2

X = ~123.4567

WRITE(3,9) X, ¥ S T
9 FORMAT(2E13.6) . 5 o
This would cause ouiput as follows:

~0.123457E +03b0. 150000E-01 (where b represents ‘_c' a space or blank)

If a scale factor is used on output, it causes the fractional part to be
multiplied by 168 and the exponent to be reduced by 8. For example, if
the previous FORMAT statement were!

9 FORMAT {(172E13. 6)
the output would be

~1. 2345675-;—02 1. 5000{}07‘ 02

in 905 & ORTRAN the standard form without scale factor, for example:
< 100005+03
will sometimes be output as:

1.00000E+02

5.4.10 The Field Spcecification C{Freepom’c)

The form of specification is G w.d. The internal value must be of type

real. On input, the & w.d specification is treated as for F w. d specification.
On output, a field of width w words wuh d sig ,;I..Lcant cha1 acters is output,
according to the {ollowing ruless

Page 58

If N is the magnitude of the value to be output, the sPG w.d specification
produces an equivalent conversion as follows:

Magnitude o Equivaienfoutput conversion
0. 1N 1 _ | F{w-4).d, 4X
C1EnN< 10 A Flw=4).(d~1)}, 4X
10d~2gnL1pd~1 - Flwad).1,4X
10d-1¢n< 10d Flw-4). 0, 4X
QOther values sP Ew. d._ ‘ '

The scale factor has no effect unless outpﬁi is in the Ew.d form.

Example with G106.4

~123.45 output as =123, 4bbbb
- ~12.345 output as ~12.34bbbb
-1.2345 output as «l.234bbbb

where b represents space (blank) character.

5.4.11 Field Specification D (double precision)

In the Dw.d specification, the corresponding internal value must be

double precision. The exponent in the output field is written with D instead
of E, but in all other respects this is analogous to the E field specification.
5.4.12 Field Specification L{logical)-

In the Lw form, the L. specifies conversion between an internal logical

value {. TRUE. or .FALSE.) and one of the letters T or F externally. The
_ total number of vharacter positions is specified by w. .

1 .
On input, the external field may contain spaces {which are optional),
the letter T or F, followed by any other characters which would fill up the
remaining w positicns. On output, the external field consists of {w -1}
spacés (blanks) followed by a letter T ox F.

5.4.13 Conversion foz Complex Nambei’s.

A complex number is input or output as though it were two real nunﬁbers,_ i
the 'real part! followed by the 'imaginary part’. Therefore there must

be two real format conversions (F, E or G} in the FORMAT statement,
corresponding to each ¢omplex variable or array elemeant in the READ/WRITE
list., Only in {ree format input (g.v) are complex numbers specially ireated.

n...)

5.4.14 Field & ec:.f:catlon A f.[wv\% anumeric
P

In the Aw form of field specification, the associated variable may be 6f -

Zny kind. 'The field specification causes w characters to be read into oy
written from, the associated 'list' element. The alphanumeric c‘iarac»ers
may be.any symbols representable in the internal code character set,
including letters,digits and the character space (blank)

In 905 FORTRAN to every basic 'A' descriptor there must correspond one
word in the input/output list. 'Aw’' descriptor will only transfer -
ane word {one storage unit) and at the most three characters. If, on ,nput,_ _

w3 then the first w-3 characters are ignored and the rema lnmg 3.
characters transferred into storage. If w43 then the rightmost (w-3)
characters appear as blanks in storage. On ouiput if w>3 the first
w~3 character will be blank in the cutput fleld

E:\,ample I (I J, K= m»egcrs)
o -'READ (1, 10) 1 J, K

_ _'-':'WRITL (z 10)1, 7, K
10 .FGRMAF (AZ A3, A5)

'Ipput. -{X_-—%_ __gzggr w3
o 2 3

5
" Stc;rage
I : A-b
J FOR
K : T%x

Cuiput ¢ A - FORDbT**

where b represents space (blank)

Example 2 (F=real, E=real array) |
DIMENSION E(20)

_ READ (1, 20) F, (E(I)v, i=1,2)
20 FORMAT (2A2, 4A3) __
2 2 3 3 3 3

where b represents space {blank)

St___ézjage

P _ : TEb

F+1 : STb
¢ ING:

:. bFO

= : v - Page 60

'carrlag' veturn and grage
o .
Li

Example 2 {Contintued} ' .-
E(2) : RMA
E{(2}+1 T, *

Example 3 (N=packed integer array)

k!

DIMENSION (20}

READ {1, 30) S (241}, I=1,2)
WRITE (2,30} (M(1), I=1,2}

30 FORMAT (243)

-

Example 4 (Mzunpacked integer array)

LIMENSION M({z0)
_READ (1, 40)
WRITE {2, 40) | (2i(1), 1=1,2)
40 FORMAT (443)

5.4.15 Field Specification X (EXip)

This specification fakes the form ¥, where w is the field wzdth_ On output,
w gpaces {blanks)are¢ inserted in the output text. On input,w characters are
read and ignored (Mewline, null, carriage return and erase are ignored on
counting w). The X descriptor is not associated with an item in the READ/
WRITE list, but is activated after the action specified by the previous
FORMAT descriptor. - '

——

¥, B, The letter X must be followed by a comma, slash or right parenthesis.

5.4.16 Field Epacification ¥ (Hollerith)

PJ

2kes the form wi, where w characters immediately
inted or punched in the position indicated by
ecification in the FORMAT statement.
iffers from the other specifications

This speécificalion t

following the letter H

the position of the Hoellarith fizld 3

The Hollerith Fieid sgecification

in as much as it does nct call for the transmission of any values from the
i ot or output of the text ifself.

list, insteazad, it cazll

11' an 'H' descriptor is wsad on input, w characters are read from the

xternal medium, and ziored in the FORMAT data re placing the w characters
*'hlch follow the letter H {In ceurting w characters; newline, null,
are ignored). If the letter H is subsequently used

for output, the new

=3
|

Mewlines
FORMAT,

Example:

8
9

WRITE(3, 8)

READ (1, 9

WRjIZTE (3, 9)

I?‘OEJQMAT (6, THHEADING)
FOIRNA‘I (20H01234567890123456789)

This reads a heading of twénty characters from the inpuat paper tape, and
outputs; ‘it on the teleprinter. Such input and cuiput may provide a more
rqac‘nnc independant form than the use of the 'A' descriptor for similar
purposes The last character of the Hollerith siring must be followed

5.5

a)

b)

' by cormmasa, slash or rlght pzrenthesis.

Examples of Field Specifications : . S : I

Integer type

To output the numbers 16 and -64

i) on the same line, the FORMAT statement could be

FORMAT (i2, I3)
which will be output as

16-64

i) on the same line but separated by three spaces use

FORMAT (12, 16}
whizh will be output as

16@@)@*64

iii) on separate lines but under each other the FORMAT statement
FORMAT (I3) ,
which will output
O
-64

External fixed pomt

To output the numbers -—187 654 (with two spaces before tne minus
sign, the FORMAT statement would be

FORMAT (F10. 3)

FORMAT (¥8.5) will give -187.65400

FORMAT (3PF8.3) will cause a number 0. 1234 giving the current
in amperes to be printed as milliamperes;

bL123,.400

‘Floating Point :
To output the number 497863.31, the FORMAT statement used,

- could be FORMAT {E14. 8)

which would ocutput;
0.49786331E+06

) - Page 62

ci)- Loéical

If the variable is , TRUR, then the FORMAT statement:
FORMAT (L2) '
T would output:
@T '
However, if the variable is _FALSE, the FORMAT statement
FORMAT{L6) will output . :

€000k

If 2 FORMAT statement contains nothing but ollerith and blank field

specifications, there must be no variables listed In the associated input
or output statement. This is cormmon practice when the WRITE statement
produces page and column headings or causes line and page spacing.

Example: -
The two statermnents:
WRITE (3, 7)
7 FORMAT(SHYARDS, 8X,4HTFEET, 8X, 6HINCHES)

will output:

YARDS C@O QQF;:,,}:T @@Cfﬂmv@ INCHES

5.6 Number Qut of Range on Output '

If the character field {w) is not wide enough to contain the output value

an asterisk is inserted in the high order position of the field. If the
exponent is also printed, its absolute value must be less than 99, otherwise
Bkl replaces the e:xponeﬂat part in the output. ;

Examples:

Format Value - Output

- F6.2 3456. 7 %56. 70
6.2 ' 234,56 | 234.56
F6. 2 ~234.56 34, 56 f
F6.0 123.0 - bbiz3. f
Fb.6 _ 123 *23000
¥6.7 _ 1.834 T %34000
Fb.4 D.123 0.1230 ;
¥6.5 : 0.123 .12300 '
D10.3 312.4E+100 0.124D4%% |

where b represents space {blank)

i

i

.
€

With E-format, the standard fors: which 1z

+ 0%y, B A ypye

occasionally becomes + 1.00... 0B +yyye whenx) = 1, and X3 ..%, =0

-
~

since the number is rounded after its formai has beszn determined,
<
5.7 Run-time FORMAT Statement Input

The ability to read a FORMAT staternent at the time of execution of the
obiect program adds great flexibility to FORTRAN. In order to achieve

g iy .

this, an array must be declared which will hold the TORMAT speciii
in the form of alphanumeric data {see Field Specification A}. The FORMATS

i
(¢
Y
o
1
Q
=

3y
T B
_are read into this array at run timme. These variable FORMATS must

reference the array by name in the READ or WRITE statement.

Example:

Suppose we have three variables to output but do not at the time of writing
the program know the form of output. A one-dimensional array MT which
is of a suitable size,in this case 5 words is declared. The arrzy is real,
and has 10 locations in which a maximum of 30 alphanumeric characters
may be stored. The format which is to be in the form: . ‘

(16, 8%, F8. 3, IPE20. 8)bbbbbhb

which consists of 23 characters plus-seven spaces which make up the
30 alphanurneric characters. The program would be written as:

REAL X, Y, FMT
INTEGER I
. DIMENSION FMT(5)
READ(1, 209){FMT(), I=1, 5)
209 FORMAT({1CA3)

.
.
. L]

WRITE(3, FMT)L, X, ¥

NOTE:. It should be pointed out that in the data input from tape, the
enclosing parenthesis of the FORMAT must be included. but the
word FORMAT itself should be ompitted from the data tape.

5.8 JFree Format Input
The FORMAT statement for a free-format input operation is as follows:

FORMAT (FREE}

The effect of a READ statement which refers to such a FORMAT 15 10 -
cause numbers to be read from the input paper tape, converted according

P

to their appearance, and the resulting values assigned to successive items

Page b4

in the READ list {the latter being interpreted accbrding to the standard rules
for fixed-format}. The operation is terminated when the end of the list is
reached, and is temporarily halted by the appearance of a halt code on the
input tape. .

When reading free-format data, the mode of conversion is determined in the

first place by the formation of the number on the input tape The value is

then stored in the form appropriate to the type (integer, real, &tc.) of the
item in the READ list.

$.8.1 Data Tapes for Free Format Input

Integer, real, dcuble~-precision, and complex numbers may be punched on
data tapes. They appear in the same form as constants of equivalent type

in a source program, and each number is terminated by cne or more

spaces or line feeds. The real part of a2 complex number is terminated by
',! complex part by')'. Blank tape, carviage return, and erase are ignored;
a halt code stops the program pending manual restart.

Acceptable characters are; digits, decimal point, +, -, D, E, comma,
parenthesis, subscript 10, space, tab, line feed, carriage return, -
blank tape, erase, halt code. The appearance of any other character .
on the input tape will give rise to an error indication, .

In a complex number, there must not be any spaces between the end of
each number and the comma or parentheses..
5.8.2 Example of Free }E‘crmat_lnputr _
The statements:
COMPLEX C
READ {1,100)F1,¥%2,31,32,J3,C
100. FORMAT (FREE) '

with input data tape:

10.3 - 10 . 1.6 2 5.3E1 {2.4,5)
will result in the following assignments:
F1 = 10.3
F2 = 10.0
31 = 7. *
Jj2 = 2 .-
Jj3 = 53
c = 2.4
c+2 =

5.0

Page 65 & 66

_n
*
1

CHAPTER 6: FUNCTIONS AND SUBROUTINES

6.1 Subprograms - General

Functions and subroutines form a means whereby a single FORTRAN

statement may cause the computer tc obey @& section of prograrn which

may contain many statements. They may be used fo obtain one 0or more

of the following advantages:

(a) To save the programmer writing the same long statement or
group of statements many times at different points in his
Prograrm. :

(b) To save core store, by avoiding the repetition of code performing

the same or similar functions, é

|

{e) To divide the program into units which may be compiled
separately. Thkis has the advantage that if an alteration is
necessary im one unit, it is only mnecessary to re-compile
that one unit. :

(ay A second advantage of separate compiiation is for convenience,

especially when several programmers are sharing a task, They

need not worry about clashes due to use of the same identifier fox

different purposes. The parameters and/or Common Blocks help,

to provide a defined interface. g ' _ .

(e} Once written 2 single subprogram may be used with different
Main Programs. T e

6.2 Main Programs, Subprograms and Program Units

A complete program in the 905 FORTRAN system, with all the statements
necegsary to run it, is known as an executable program. It may congist,
of one or more program units. : o S SR]

Each program unit is either a Main prograra or a subprogram written in
either FORTRAN or 905 MASIR assembly code. There must only be one
Main program which should be written in FORTRAN (but could be written
jn MASIR code). A FORTRAN mein program is identified by the absence
of either a FUNCTION or SUBROUTINE statement at the beginning of the
programj (when compiled the program unit takes on the name MAIN.) .

A FORTRAN subprogram is either a FUNCTION subprogram or a
SUBROUTINE subprogram, identified by the appropriate statement as the
first significant line of text. .

NOTE: A subroutine is sometimes referred to as a proceadure.

No program unit in 905 FORTRAN may be so large that its compiled code
plus the local arrays and variables {(i.e. .mot in COMMON) excceds

| Page 67

LT

8100 words of computer storage.

6.3 ‘Types of E?rtéced;z_re

In 905 FORTRAN, the following types of procedure can be used:

{(a} Statement Functions.

(b} Intrinsic Functions.

{c) Basic External Functions.
(d) FUNCTION Subpfogra;ns .
{e) | SU;BROUTI‘NE Subprog:;:ams.

Statement functions are single statements embedded within a program unit,
and are not therefore classed as subprograms (they are described in
detail later in this section),

Inirinsic functions are a sei of funciions provided with the 905 FORTRAN
Compiler system, and listed in Appendix I Table A 1.2, Their names
should not be used for any other purpose. They perform commonly
required operations such as finding the absolute magnitude of a number.

Basic External Functions are a set of functions also supplied with the
Compiler system. They perform ugeful Mathematical functions such as
taking the square root, {inding the sine etc. A number of other
trignometric functions can be casily derived from the functions supplied,

for example:

arcsin (x) = arctan (sqrt (le(lwx“)))

The differences between instrinsic and external functions are that, extermal
functions may be mentioned in EXTERNAL statocments and one ’
may write external functions to replace the standard functions (if
considered necessarv}. For example, the programmer may write a SQRT
routine which took special action when 2 negative argument was given.

6.4 Subprogram Head -

* A subprogram head is declared in the form:

FUNCTION f(ml e my)
SUBROUTINE s(mj,Mz...cc0un. my.}
or SUBROUTINE s

where:

{is the name of the FUNCTION and specifies its type in accoxrdance
with the implicit type rules (see (vi}) '

Page 68

(iii) My, My, Mgyeeeen- - R

{(if) s is the name of SUBROUTINE (apart from the Q Rule ~ see
: 2.5.5 .~ a subroutine name is not governed by set rules but, care
- must be taken to avoid clashes of names; therefore the choice of
s is completely arbitrary). } :

are express formal parameoters.

Each mj must be the neme of a variable or an array, or a
procedure. There must be at least one parameter per FUNCTION
staterment hut there need not be any explicit parameters for a
SUBROUTINE. ' :

(iv) Each n; which represents an array must appear ina DIMENSION
statement withir the body of the subprogram. In this DIMENSION
statement the upper bounds of its suffices may be given either as
integer constants or as infeger variables which are themselves
express formal parameters. '

(v) In addition to the express formal parameters, 2 subprogram may
refer to varizbles in COMMON, these may be regarded as
irmmplicit parameters.

{vi) The word FUNCTION nﬁay be preceded by cone of the following:

REAL, INTEGER, DOUBLE PRECISION, LOGICAL or COMPLEX,
which causes the appropriate type to be associated with the
FUNCTION name.

6.5 The Subprogram Body

A subprogram body is subject to specidl rules as in a normal FORTRAN
main program. They are: '

(i) A subroutine does not have a value and no assignment may be made

to its name. It may communicate information to the program that
f called it {main program oxr another subprogram) by altering the
! “values of one or more of its parameters. -

(ii} . Within 2 FUNCTION subprogram, its name (f) acts as an ordinary
_variable of the appropriate type. Itis undefined on entry to the
FUNCTION but 2 value must be assigned to it, before exit is made
frorm the FUNCTION subprogram. A

(iit) - In 905 FORTRAN, the alteration by a FUNCTION of any of its
" pavameters is not considered to be an errox. Fowever, this
should be avoided wherever possible, particularly as the evaluation
of 2 FUNCTION statement may not validly alter the value of any
other elements within any expression, assignment statement or
CALIL statement in which the FUNCTION appears. :

{iv) A subprogram body may rot itself contain a declaration of 2
subprogram.)

) .

(vi)

(vii}

6.6

1

Axn explicit formal parameter may not cccur ina COMMON ox
EQUIVALENCE statement (see CHAPTER 4). ' :

When a2 subprogram has completed its computation, it returns
cénwol to the program that called it by means of & RETURN
statement This comprises of the word R ETURN on a new line.

The body of & subprogram is terminated by an END staztement.
Thls comprises of the word END on a new line.

‘Examples of Function and Subroutine Subprograms

FUNCTION MAX(N L
[P ({I- J\ 1,1, , -
MAX =

RETURl ¥
MAX =1
RETURN

' END

¢

SUBROUTINE MTXMLT (A&, N, M, B,L,C)
DIMENSION A(NN, M), B(M, L), C(N, L)

C BECOMES A TIMES B
pDOl1i=1,N

DOl K=1,L

D=0.0

pO2J=1,M
D = D+& (1, 1) * B(J,K)
C(,K)=D

RETURN

END

6.7 Calling a Subprogram

@

(2)

A FUNCTION subprogram is activated by writing:

in some statement which can make use of the value of 1.

A SUBROUTINE subprogram is activated by a call stafement,
which takes the form:

CALL s(m),ms, .cnuunns my)

" The FORTRAN word CALL must be terminated by at 13dSL one

SP&CS

(3) If an express formal parameter (integer variable) is used as a
subscript bound then the coxresponding actual parameter must be
an integer variable to which the correct value of the subscript

"bound has been assigned poior to the call of the procedure.

(4) Ifan cxpress formal parameter is an array the corresnondnm
actual parameter should be an array of the same type.

. (5) If an express formal parameter is a simple variable, the
" corresponding actual parameter must be & simple variable, arvayv
element, constant or expression of the same type. If an actual
parameter is a constant or expression then the corresponding
formal parameter: '

(i} must not occur in a DIMENSION statement

(i1) must not have a value assigned to it during
the exscution of the subprogram.

(6) The actual parareters need not all be distinct.

. 6.8 Examples of Calling Subprograms

This example is based on the example of subprograms in Section 6.6.

DIMENSION K50, A(5, 10), B(10, 20), C(5, 20)
C ° THE FLLIPSIS INDICATES THE ASSIGNMENT OF
C VALUES TO THE ELEMENTS OF K, A AND B

I=MAX (K1}, K(2)) .

DO 1 J=3,50

I=MAX (I, K({J))

11 =5 . ST w

12 =10 e

13 =20 L ‘

CALL MTXMLT (A,I1, 12 B, I3, c)

END

{H}) | T

6.9 Statement Functions

It often happens that a programmez will find some relatively simple
computation recurring through hie pr ogram, making it desirable to be

able to set up 2 function to carry out the computation. This function would
be needed in only the one program, so that there wouid be no point in
setting up & new supplied function for the purpose - which involves furthex
work. Instead, a function can be defined for the purpose of the one
program and then used whenever desired in that program. . It has no effect
on any other program. '

A statement function is defined by writing a single statement of the form

a = b, where & is the name of the function and b is an expression. The
pame, which is invented by the programmer, is formed according to the
same rules that apply to a variable name: one to six letters or digits, the
first of which must be a letter. If the name of the statement funciion is
mentioned in a prior type statement, there is no restriction on the initial
letter; if tﬁe name is not mentioned in a type staternent, the initial letter
dzstlzlgals,.;es between real and integer in the usual way. The name must
not be the! same a5 that of any supplied function.

The namé of the function is followed by parentheses enclosing the argu-
ment{s), 'which must be separated by commas (if there is move than one}
The arguments in the definition must not be subscripted.

. -The right-hand side of the definition statement may be any expression not
1nv01v11w subscripted variables. It may use variazbles not specified as
arguments and it may use other functicns (except itself). All function
definitions must appear before the {irst executable statement of the
program. If the right-hand side of a statement function uses anothe
statement function, the function definition of the latter must have E.ppfial’()d

earlier in the program.

As an illustration, suppose that in a certain program it is freqguently

necessary to compute one root of the quadratic equation, ax” + bx + ¢ = 0,
given values of a,b and c. A function can be defined to carry out this

cornpuiation, by writing @
ROOT (A,B,C) = (- B+ SQRT(B*%2 = 4. %A%C)}/(2.%A)

The compiler will produce a sequence of instructions in the object program
to compute the value of the f\.‘mctzon given three values {0 use in the

computation.

This is only the definition of the xunctzon, it does not cause computation
to take place. The variable names used as arguments are only dummies;
they may be the same as variable names appearing elsewhere in the
program. The argument names are unimportant, except as they may
distinguish between integer and real. '

A statement function is used by writing its name wherever the function

_wvalue is desired and substituting appropriate expres gions for the

arguments. '‘Appropriate' here means, that if a variable in

the definition is real, the expression substituted for that variable rnust
also be real, and similarly for the other types of variables. The values
‘of these expressions will be substituted into the program segment
established by the definition and the value of the function comnuLed The

actual arguments may be subscripted if desired.

Examples of the use of the statement function terms defined are:
Z = ROOT (2.0,8.0,3.0)+ Y : ., -

which finds a root of 2.0 XZ + 8 x+ 3 and adds value ¥
S _ “pags 72 -

2 = ROOT {E,DM + 5.0,DM) * BETA - ATAN (C}

which finds the root of (E}:Z +{DM+5) x + DM} and multiples it by BETA,
before subtracting ATAN C. : :

Variables in the right-hand side of the statement function definition need
not all be dummy arguments. If a variable name is not a dummy argument,
it has the same meaning 28 that name anywhere clse in the program unit.

-

Page 73 & 74 ‘

s s s 0

ey

g
i

g

CHAPTER 7: USE OFF MASIR/SIR CODING WITHIN FORTRJ N TEXT
7.% . Code Segtions

There are certain operations which are faster and more economical when

written directly in MASIR than when written in FORTR}\N and translated

into machine code.

The examples used in this chapter illustrate the method of writing SIR
coding as part of a FORTRAN program. '

Tt is assumead that the reader of this chapter is familiar with the programm-
ing languzge MASIR. ' :

A code section may either be a complete subprogram or may be a part of

a program l,:,.i‘.;, the remainder of which is written in FORTRAN source text.
In the latter case, the machine code instructions are preceded by the
directive CODE written as a FORTRAN statement on 2 line by itself and
terminated by the directive FORTRAN written on a new line. -

l

7.1.3 Forn of Machine Code Instructions Within a FORTRAN Unit

Machine code instructions are written in a {form similar to 900 series SIR
coding. These instractions are written one per line. Labels should always
be written on the lefi hand edge of the coding sheet i.e. to the left of the
vertical line if vusing a 'free- ion'mat’ coding sheet. The instructions
lzbelied should be separzted by two spaces from the label, or alterna:.wely
the label may be on a line of its own.

The {ancticn and operand are written to the right of the vertical line on a
coding sheet. The function consists of an unsigned one or

npe 0 to 15, preceded by a / if the instruction is
ess part) follows the function on the same

line gseparated from if by one or two spaces.

ezthér at the beginning of a
icates that the remainder of the
P by the cornpller. t should be néted

ri)hi parentheses te terminate the
nd over more than one lme-

L comment it intreducen by i

Mzchine code 1013

tructioes may bo lzbeiled. but only with identifiers of the
form Qn, \2'2191'6 n repregente a2 numbar congisting of one to five digits.

Exarnples:

o} G280 @9T¥SY .

Tha numeric part n is treated by the compiler in the same way as FORTRAN

L tement labels. - It should be noted that these numbers should not be duplicated

T with 2113? other label in the program unit. The number n may be used in a
GOTO statement within the program unit and similarly any ¥Fortran state-

B sment number m within the unit may appear in a machine code jump (branch)

-~ . instruction as an identifier preceded by the letter O i.e. Qm. In either
case the rules of FORTRAN must be obeyed; for example a GOTO or machine

_ code jump must not cause control to be transferred into a DO loop from
- outside its range {except for an extended range DO}.

i

7.1.5 Operand

The coperand (or address part) of a machine code instruction may take one
of the {ollowing forms: : : o

(i} Constant. An integer (+ or) or octal (&) literal constant may be
introduced. These are handled by the compiler as FORTRAN
constants and are allocated a position in local workspace.

(ii) Variable or Array Name. The address placed in the machine code
instruction depends on whether the identifier is a local variable,
array, item in COMMON or a formal parameter. For an item ina
localdata ares, writing the name as an operand causes the address
of the variable to be placed in the instruction. If the name has not
been previously encountered by the compiler in the current program
unit, it is classed as an integer or real variable according to
FORTRAN implicit type and the allocated space is local data
(implicit types follow the rules state in Chapter 2 - integer variables
must start with one of the letters I, J, K. L, M or N).

If the variable name quoted in the address part is a local array
name, the address placed in the instruction is that of the first
element i.e. {1), (1,1} or (1,1,1) of a one, two or three dimensional
array respectively. In either of these cases, the identifier may

be followed by a positive cffset +n for referencing multi-word items.
If the identificr is a variable or array in COMMON, or a formal
parameter cf a subprogram, writing the name as an operand causes
the address of a local data location to be placed in the instruction.
This location holds the address of the variable or first array
element relative to the store module of the current program unit .-

(iii) Absolute addresses. The machine code function may be followed
- by an unsigned integer in the address part of the instruction,
indicating a core store address, input/output address or a nomber

of shifts. : .

- 7.1.6 Example

The example which follows is a subroutine containing rmachine code ingtruc-

tions.

o

[THIS SUBROUTINE SHOWS EXAMPLES OF MACHINE.CODE SECTICNS

SUBROUTINE SUB(IF)
DIMENSION IA(100)
COMMON K, J(160)

“““ GODE |
47 (ADDRESS OF J)
5 IWS |
FORTRAN

DO 9 N=1, IP
IF (N-120) 1,2,2

1 CODE
0 IP '
""" j4 0 (VALUE OF IP)
0 K | '
i iz 0 _ (NEGATE AND ADD VALUE OF Kj
9 Q2 B
0 L
/4o 1A (GET 1A [N#1])
0 IWS
5 0 (STORE IN J)
_ o N |
10 IWS
4 TA+20 (a {21})
B 1 -6 '
14 3
6 2077770
7 Q9
5 M
FORTRAN j

WRITE (3, 8) M

8 FORMAT (15)
9 CONTINUE
RETURN

END

Page
. bl

T

prosenss

7.1.7 Return to FORTRAN Text

After a group of SIR machine code instructions a return to the FORTRAN
source program will be necessary, this can be achieved by using the
directive FORTRAN written on a new line. '

7.1.8 Gonsgtraint on Symbolic Names

When machine code instructions are included in a programm unit, possible
confusion is brought about when using variable names composed of the
Jetter Q followed by 1 to 5 digits. Such names cannot be referenced within
a machine code section zs they would be treated as label veferences and
so should be avoided in the FORTRAN text. '

7.2 Program uni’s in Machine Code

The facility for in-line machine code will cover the majority of requirements
not catered for by the FORTRAN language, withthe advantage thatthe standard
subroutine linking code is autornatically ingcrted by the computer. The loader,
however, also allows independently compiled MASIR blocks to be incorporated
into an object program. The following points summarise the rules for calling
MASIR program units from within FORTRAN texts. ' o
1} On entry to a block of SIR code, a correct module-relative link
_has been planted in the first word of the bleck and a jump made to
‘the second word. At this time, the accumulator contains in bits
17-14 the module number of the call minus the module number of
the SIR block. Following the call are the addresses of any operands,
relative to the module of the call. A parameter address word con-
taining a direct address has bit 18=1; one level of indirection is

provided by setting bit 18=0.

2) The macro CALLG (name) should be used to call any further sub-

routines, and parameter addresses set up as previously defined,
In principle the Main program of an executable system can be in

MASIR, calling FORTRAN subprograms by CALLG.

3) It is not possible to access FORTRAN COMMON storage, exceptby
passing addresses of items in COMMON as parameters to the SIR
block. |

4) Return should be made to the location following the last parameter
of the call.

These rules are now expanded in greater detail.

Within each store module {block of 8192 words) inte which a program is

loaded, the FORTRAN/MASIR loader places a set of instructions known
as module code; these provide ‘a means of transferring between subroutines

iy different modules. When the FORTRAN compiler generates a call of a
SUBROUTINE or FUNCTION, it generates a special macro which is pro;essed

o ‘7 Page '{3%“ o

by the Loader. The Macro Assembler MASIR generates the same macro
when the source code macro CALLG is used., CALLG is written in the
form: '

CALLG(SUB)
where SUB is the name of the subroutine to he entered.

The loader macro, previcusly mentioned always generates three words of

code. If the subroutine in question is loaded into the same module as the

- calling routine, the loader generates a dicect subroutine call, equivalent
to the assembly code sequence: ’

- 4 40

11 SUB

----- 8 SUB+l

If the subroutine is loaded into a different store module, the loader gener-
- - ates, for each call, 3 words equivalent to the assembly code sequence:
4 +3UB

11 QMC (Call SUB via Module Code)
8 .QMC+l11

9
"
o
U
3]
o
¥

where +5UB represents the address of a location holding the ad
SUB relative to the calling module.

The modulg code QMC has the form:

: ‘ Word

0; _ QMC >|
- 1, ‘ to 10; (Reserved for FORTRAN, etc. use}" ‘
DR 3 ¥ 5 W {Store Relative Address) '
- . | 12; 0w)
13; 6 -+ €760000
- ' 14; - 2 QMC
15; _) /5 0 (Store adjusted link)
. 16 - 6 &760000
17 /8 1 {Jump to subroutine er;try)

This code is automasatically duplicated in each modale in which code is
stored,

The called subroutine may be written in Assembly code or FORTRPAN. If
SUR is written in Assembly code it should have the usual form:

> (Link)

{Entry point following link)}

{(Body of Subroutine]}

0 SuUB (Exit)
/8 1

If the call of the subroutine is from FORTRAN, this example is
tguivalent to a SUBROUTINE with no explicit formal parameters:

If the Subroutine has two explicit formal parameters, e.g. SUB2 (I,J),
the 3 word calling macro will be followed by-two addresses referencing
the actual parameters. Exit {rom the Assembly code subroutine would be
to the third location after the call (e.g. by /8 3 jumnp).

For each parameter address, if Bit 18 = 1 (i.e. the word is negative)
Bits 17 to 1 hold the direct address of the parameter, relative to the
calling module. If the word is positive, (Bit 18 = 0}, then Bits 17 to 1
contain an indirect address. This address points to a location of store
holding the actual address of the parameter, relative to the calling
rmodale.

Example:

SUB2 starts at 7000T 0 (Jocation 7000 of store zone 0), and is called {rom a
program in zone {Module) 1 say at 50081. There are two parameters to
the call, the first direct, an array starting at location 800%1, the second
indirect, an integer at 2000‘?2 (i.e. 18384). The loader has aliocated
OMC to location 8000%1 in store zone 1. The call might take the form:

- 4 600
1} 8000
B 8 8011

j0 800 (PDirect address, relative to Zone 1)
0 700 (Indirect address)

where 6@0%1 will hold -1192 {= 7000-8192) the relative address of SUB2.
- And 70071 will hold £10192 (= 8192+2000) the relative address of the
" second parameter. '

In MASIR a2ssembly code this may be written:
L CALLG(SUR2)

B /G ARRAY | ” _' : o | .
¢ ADRBE

where ADRDB is a local data location holding the address of the second
parameter. If the second parameter is fixed one could write in ADRB:

ADRB +X

—) where X is the (global) name of the actual parameter, but this could be
simplified further by omitting ADRB and writing: '

= CALLG(SUB2)

/6 ARRAY

0 +X

. When writing in Assembly.code any parameters referenced by direct address
must be in the same module as the call, Any non-lecal parameters which
are, or might be, in another module must be referenced indirectly. This
is because the +LABLL facility of the assembler may generate a negative
or a positive address, depending on the relative position of the label.

Therefore, it is not permissible to use the form +LABKEL on its own,

{(i.e. not preceded by a function number) in the words following the CALLG.
0 +LABEL is permissible because its generates an indirect ("literal™)
address, and the parameter word itself will always be positive. ‘

If written in Assembly Code, the subroutine SUB2 might take the form:

[susz] o
..... SUB2 > R
. 5 ADJA (Address adjustment)
""" 0 SUB2 '
VIO o
9 STPAl {Direct address)
1 ADJA | e
5 W
4] W
B /4 0 _
STPAL 6 &37T7777
a 1 ADJA
5 PAl (Store address of first parameter)
"""" 0 SUBZ
/4 2
- 9 STPAZ
ADJA

Page BI

[4 0
STPAZ 6] &377777
1 ADJA
5 W {Store addresé of se:coﬁd paraincter)
0 W |
j4 0 (Pick up value of second parameter)
(If the program is to be run on 905 or 920C only, the 5 w, 0 W

sequences may be replaced by ATB).
Eaxit from the subroutine would normally be in the form:

0 SuB:z |
./8 3 . v

The reader may find it helpful to work through the given examples, using
numeric examples of addresses, to confirm that the parameters will be -
accessed correctly, and that return will be made corractly to the calling

PI‘OgI&n’! .

A FORTRAN function call will be compiled in the same way as a subroutine
call. If it is an integer function, the result will be reld in the machine
A-register on exit fromn the FUNCTION. If a real, double precision or

cormplex FUNCTION the result will be in the appropriate software pseudo-
accumulator of QFP. ‘

If the subroutine written in assembly code will never be called directly

from FORTRAN, it is of course possible to siraplify the subroutine body, for
example by only aliowing direct address pararneters, or by a completely
different method of parameter passing. The use of the CALLG macro

does not dictate any particular method of parameter passing, it merely
supplies an address adjustment factor in the A-register on entry to 2
subroutine, '

Page 82

CHAPTER 8: WRITING FORTRAN PROGRAM

8.1 Program Writing

The format for Standard FORTRAN programs is based on the use of punched
“““““ . cards. Since the majority of 905 FORTRAN users input programs via the
medium, paper tape, an alternative format called free~format is provided.
The Standard FORTRAN format for program input is referredto as fixed
format. -

Column numbers in fixed format input are determined by counting the number
of printing positions from the leit hand margin (i.e. the number of signifi-
cant printing characters since the last new line (linefeed) character,
including space but excluding nall {blank paper tape}, carriage return and

erase. o) -

por it arianea 8 ey

8.2 Fized Format

When writing programs in fixed format, a FORTRAN coding sheet should

be wsed, with individual character positions marked on each line {squared graph
paper may be used zs an accept able alternative). The first six columns

are reserved for special use, and columns 7 to 72 usually contain statements
{spaces are not significant in this area except where specifically stated

e.g. Hollerith strings). ‘ .

The significance of the various lines are as follows:

2) COMMENT lines T '

A comment line must commence with the letter G written in the

first column; the remainder of the line contains text inserted

by the programmer. They are used to improve visual interpreta-
tion of the text to a programmer or user who wishes to under- i
stand or rnodify the program, or for the purposes of the original
programmer who returns to modify the program after considerable

[

absence from the program({Comment lines are ignored by the
compiler, but muast not occur between & line and its continuation
line, or between two continuation lines).

b) " Initial jines o o ' \

The initial linc ig the first line of a statement {irequently it will l {
be ik line of a statement. It is distinguished by leaving .
column & blank or zero. i.e. the sixth significant character in
either space or digit 0). Columns 1 to 5 will either be blank or

contain & stetement number.

{l

O

3
o

oniinvation lines - -

C
" A continuation line is used to extend a staterment which requires
more characters that may be punched on a single line. It must
follow an initial line or ancther continuation line {Comment may o
not se used in the middle of a statement),

Page 83

FR—

NOTE:

. d)

8.3

NOTE:

{blank) or zero (0) in column six.. Ia practice, it

A continuation line is written.with a character other than space

is usual to use
the digits 1 to 9 to number the continuaticn lines after an initial
line. There may be up to 19 continuation lines tc 2 single statement
in a Standaré FORTRAN program, but G035 I‘OR‘I‘T‘.‘ N will not
detect the Limit. : : :

There is also a liniit on the complexily of 2 statement, th
cormplexity being expressed by the number of nested expressions
and function calls.

It ig recommended that columns I o 8 of 2 continusiion line are
left blank.

END line -

" An END line is tl e line which terminates 2 program unit.

It should be written with spaces {blanks)in.clamns 1to 6, and the
letters I, N, D incolumns 7, 8, 9 respectively. The END lineisnotan
executable gtatement and the statement preceding it must be a
GOTO, STOP or simmilar statement. If the program execution
appavrently leads to an END lme, the effect is undefined.

Free Format

The compiler discriminates between frec and fixed format input

as follows. Fixed Format is assurmned mum;ly,buL if the first
character or the first line of a program unit is a character |
(apart from new line) ‘this.intrcduces a comment line; the program
unit is read as free format. Every free format program unitmust
start with 2 comment.

It is not suificient for only the first of a group of units to start
with a comment.

When either writing or punching programs, the feliowing rules must
be observed:

Programs are writien on lined paper with a vertical line approx-

‘imately 1% inches from the left hand margin.

Each FORTRAN statement starts on a new line and the statement
proper is written to the right of the verucaa line (colurmns 7-72 incly.

Staterment numbers are written to the left of bhe vertical line
{columnsg 1-5 incl.).

Continuation lines are to be indicated by a currency symbol{f) to
the left of the vertical line (Continuation lines are vsed where the
statement is too long for one line of text).

Cormment lines in free format are to be ‘r‘ff:._t('c‘:.l_ed by the symbol [:
written to the left of the vertical line {In fixed format,the letterCis

used for this purpose again to the left of tke vertlcal line). A comment
line is 1§>nored by the compiler.

R . meo

£y When punching, any code to the left of the vertical line is punched
first; two spaces follow and finally the statements.

8.4 Punching Instructions

An example of program punched from coding is given in Section 8. 6.
Punching rules are as follows! -

a) The program can be punched on any type of tape punching equipment
B operating in 900 series, ISO, British Standard or ASCII code.
' Whatever equipment is used, the punched tape produced should ke
verified {using a verifier punch} by a second éperator, or should
. be printed out on the teleprinter. The print-out produced cshould be
checked against the original program coding to ensure that no
punching errors have occurred.

NOTE: On some type of punching equipment newlina is punched as a
single character, whilst on other types a combination of carriage
return and line feed characters is used. On this latter type of

- " equipment, N consecutive new lines should be punched as:

carriage-return, N line-feeds, blanks s S

b) A program can be written on a pre-printed FORTRAN coding
Sheet or on lined paper as specified in Section 8. 3.

) Always punch the full written program {i.e. inclide all blank lines,
spaces etc.} to ensure a correct print-out.

- d}) For Free Format text, always ensure that two spaces are left
between code to the left of the vertical line and the rest of the
information carried on that line of coding.

e) Exercise care to avoid confusion between the following sets of

characters:

Figure 0 and the Letter O

Figure 1 and the Letter I
Figure Z and the Letter Z2 ST o
Figure 5 and:the Letter 5 T

These characters must be punched correctly and punch operators must
familiarisg themselves with the various punching conventionsused by the

various programmers in their coding.

NOTE: There is no universally accepted convention, even for distinguishing
oL between letter C and figure 0, although it is common practice to
slash a zero (P). -

- f) Always run-out about 6"(15 cm) of blank tape at the beglnnvno— of
every tape punched. . _ S {

Fem
4

g) _ - Ifan incorrect character is punched, this may be rectified by
backspacing and overpunching with an 'erase’ character. The
ierase' character does not vount towards the maximum mamber
of characters thal can be punched on a line (see b}.

h) A line of text must not include more than 80 characters (blank and
‘ erase do not count towards this total). S

8.5 Names Starting with €2

If the first character of an identifier starts with the letter (}, the second
character rmoust be the letter U. : ’

8.6 Example of Wr itten Program in Free r-'ﬂ‘c-rma,t

L MATRIX MULTIPLICATION
SUBROUTINE MXMULT {A,B,C.1,J.k)
DIMENSION A{I, k), B{1,J}, C{J, k)
DOUBLE PRECISION AA

f A= B*C
PO1II=1,1
DO P kk=1,k
AA = '
DO 2J1J = o

2 AA = AA+B (11, JJ) * G (I, kk)

. IF (AA-IDI19}1, 1,4 | :

1 A{II,kk) = AA o .
RETURN

, 4 WRITE (3, 9) AA

. ~ GOTO 1 -

9 FORMAT (22HINNER PRODUCT TOO BIG =,
g D20.10)
e END

This program would then be punched thus:
[MATRIX MULTIPLICATION
SUBRQUTINE MXMULT (A,B,C,I1,7,k)
DIMENSION A{I,k),B(L, 3}, C(7., k)
DOUBLE PRECISION AA
[Aspac
' DO 1 1i=1,1

DO 1 kk=l,k

AA=0

DO 1 1I=1,1I

‘DO 1 kk=],k

AA =0

DO 2 JJ=1,7J
2 AA=AABR{IL, IT) %C {33, kk)

IF (AA 1D19)1, 1.4

1 A{I1, Kk)=AA

RETURN “

4 WRITE (3. 9}AA

GOTO 1

9 FORMAT (22HINNER PRODUCT TOO BIG=,
g D20.10) :
~ END

An alternative layout for the coding of the example in fixed format
would be:

¢ MATRIX MULTIPLICATION :

SURROUTINE MXMULT {(A,B.C,LJ,K
VIMENSION A(LK), B(I,K), C{J, X}

\\\\\ : DOUBLE PRECISION AA

A=BEC

DO 1 II=1,1

----- DO 1 KK=1,K) - o :
AA=D ’ ' - . ‘ . !
Do 2 1I=1,7 : ' ’

2 AASAASB(IL JI)*C (JT,KK)

1§

IF{AA-ID19) 1,1,4 S : - . :
- 1 A (ILKK) = AA ' : .
""" RETURN _ : , L - ' o b
4 WRITE (3, 9)AA o - : f
COTO 1 .
- ' FORMAT (2zHINNER PRODUCT TOO BIG=
1 520.10
END
8.7 Correction of FORTRAN Programs
N Corrections to a FORTRAN program must be made to the original FORTRAN l
text. Individual units changed should be re-compiled. : _
i

Page &7 & 8B

CHAPTER 9 CGC “e{ PILER OPEi{ﬁ "ION

'The compller is deswncd to process independent program units, which 1t

converts into relocatable binary form suitable for presentation to the linking
loader. Once compiled, a prograrm can be incorporated in any nurnber of

object pregrams.

A secondary output identifies the program upit and specifies to the programm -
er any ervors detected during compilation (see Chapter 10}, It also
optionally supplies a siore map and a liet of external identifiers refer-

enced by the program.

9.1 Options 7 _ _)
g

Options are expressed 25 an octal number formed from the sum of
P

the individual options required by a program; if all options are omitted, a
standard cption 00 is éssumed. Values of other options are:

1
i
i -
3

01 Syntax check only

02 Data map required L — . .
04 Data map output to puﬁch _

10 - Pack integer a:réiys R | _ . ’

Hence, a program with standard option 00 calls for normal compilation

with standard integer arrays (i.e. not packed). A program with option value
octal 13 calls for syniax check (octal 01), data map requirement {octal 02),
with packed integer arrays (octal 10}, ')

9.2 Secondary Qutput . . .

The heading FORTOZ is cuiput when compzldtmn of a program unit

cornmences (the serial number identifying the version of compiler in use,
which can ve ry). Error messages,if any,are next output and are followed
by the data map {if regiired) and finally the Lermnmtmg message. This

3

output takes the form: : o _ ;
UNIT oo SIiZE=nnnn

wherc:

wyxxxx is the unit name, and

nnnm is the number of words cccupied by code, constants and local variables
and arrays but NOT veriables or arrays in COMMON,

When an error occurs. a value for the unit size is output which includes
code, constants etc. This value does not include the error statements
and the value should therefore be treatad with caution.

9.3 Ervor Reporte

The general form o

4t @

L4

ror ouiput indication is!

Page 89

o sy

¢tt nnnn 1111 IR R
\:;‘nere: ' '

¢ttt is the error type code (see Chapter 10}

nnnn- is the last statement zmmbér encountered, and

1111 ig the count of non blank lines since this statemeni number.

If an ervor is encountered before the end of a statement, the part of the
statement already processed will be displayed on the next line.

EQUIVALENCE statements are nol precessed by the compiler until the

end of the specification section of a program unit. If an error is detected
during this processing, the statement number and count of lincs only
indicate the firgt statement following in the unit whick is not a specification

statement. A further number (cc) is output which shows the position |
I , P i

~reached within the total EQUIVALENCE information (vegarded a$ a single

continuous line with blanks and the word EQUIVALENCE omitted).

If the line {indicated by 1111} is 2 comment line, the error recorded refers
to the preceding statermnent. For all except warning errors {identified by
the initial letter W), the cutput of RLB is terminated.

With: the exception of error ZZ {compiler workspace full), the reimainder of
the program unit is scarned and checked for correct syntax. Hence, any
error messages output from this point (i.e. store full) although they may
be useful to the programmer, must he regarded with caution.

9.4 Data Map

1f the data map option is set, upon detection of the END line statement the
following information is output: ‘

DATA MAP | xDoxxX

yyyyyy aaaa b
VYYYYy azaa 1 bbbbbb

fas) “

where:

sxz¥xx is the unit name; there is an entry in the map list for each variable

or arvay referred to in the program unit,

yyyyyy refers to the symbolic name of an itermn

aaaa refers tc the relative address of that item, and

t refers to that address type. The address iype can be:
0 Undefined

1 COMMON i

3 L.ocal data

4 Indirect address in local data e
; Page S0

*

In the instance of COMMON, the block name bbbbbb is also given.

All addresscs are relative to the start of the program unit or COMMON

block. Absolute addresses can be derived from a global list after loading
of the program.

The 'undefined’ type {value 0} includes parameters of statement functions,
but canalso indicate missespelt names.

After the variables and arrays are printed the label list is of the formu

LABELS

nnnrnn aaaa

where!

nnzmnn ig the statememt numbe

aaaa is the relative address of that statement . (relatwe to the start of the

program unit)

NOTE: If the address is omitted, this means that the lahel has been
referred to but not defined. .

The last section of output lists the external references in the form:

EXTERNAL

PPPPPP

bbbbbb ssss ')

All external probedule names pppppp or COMMON block names bbbbbb
referenced within the program unit are included, the latier indicating the
block size by ssss. Blank COMMON is dmolayed asablank with a size.

-

Page 91 & 92

P PR A

L e

s o
b

CHAPTER 10: ERROR MESSAGES

Included in this chapler are the error messages which adre outpul at
Gompue -time, lcading time, object time and the Control error reports.

10.1 C(}mpile-f:ime Errors

The following table contains error messagaes which are output during

compilation.

- . _,\..»..' . ‘k“' - . Page 93

. g oy

V6 %2

Compile-time errors

Error Code

Qescrigtion

Comment or Example

ARD

ASS

CHx
CMN

CN1

. CN2
‘DAL

DAZ
DOl

DO2

Array declarator error

ASSIGN statement syntax error

Character x not found

Name usage in COMMON

Illegal constant formation

invalid complex constant
DATA statement syntax error

DATA statement list error

DO statement error

DO loops not nested

Dimension not constant, or formal variable if
formal array,

'"TO" missging or misemspelt
24

Particular character expected on the basis of syntax
so far, '

Item is formal parameter. or has already appeared in
a COMMON statement.

Exponent overflow in real constant; integer constant
overflow; exponent digits missing; zero Hollerith
count; possible error in .EQ. operator leading to

© confusion with real constant,

Imaginary part not a correctly formed real constant.

List not ending with comma or oblique.

Number of items in value list not equal to number of

data elements; element declared in COMMON.

- Statement number already defined; DO misspelt;

DO in logical IF,

G4 98eg

Error Code
ol S 288

Description

Comment or Example

EQS

EX1

X2

EX6

EXY

£X8
EX9

. FOR

Illegal subscript within EQUIVALENCE

Replacement operator usage

Unmatched parenthesis within para-
meter expreseion

Relational usage
Iilegal operator or operand/
- operator combination

Array or function usage

Incorrect unary usage

Illegal type association

Too many open parentheses

-Too many closed parentheses
——
m—

FORMAT statement unnumbex ed

Aot et

Subscript is not constant, or number of subscripts
does not match number of dimensions.

€.g. more than one "=" in assignment.

Complex item in 1'<,iat10nal expression, or two
relational operators.

e.g: logical operand with arithmetic operator,

Array or function name not followed by subscript/
argument, and not as single argument; statement
funcilon quoted asan arcxumcnt

Successive unary operators, etc.

Logical operand in arithmetic expression or vice
versa; complex or logical within :relatmnal
integer or DP in complex

o6 aded |

Lrror Code

Description

" ominent or Bxamole

FUN
GTO

HOL .

LI

NUl

NU2
NU3
NU4
NUS

NUb

FUNCTION without argpuments
GOTO statement syntax error

Hollerith constant error

Logical IF error

Name missing
Variable missing
Invalid procedure name

Integer variable expected,
not found,

Integer variable or constant
expected, not found.

Arrayv name error

incorrect character count, or Line Feed within
Hollerith string.

Logical IF within logical IF

Variable, array, ot procedure name expected from
context but not found.

Variable or array name (not formal parameter)
expected from context but not found.

L.

Name quoted as'procedure name previously defined
as array or used as variable,

Name preceding array declara..or already defmed as

: array or procedure.

-

Error Code

Desc riEticn

Comment or Example

L6 #Red

PBN

RET

RWl

RW2

TRW3

SBX
SN1
SN2

SSQ

STE

© S5TM

Procedure name = blockname
RETURN staternent in main
prograrn

READ/WRITE format reference
error :

Input/Output list name error

Input/Qutput list syntax error

- Subscript expression syntax

error.

Invalid statement number
definition
Invalid staternent number
reference

Statement sequence error

Statement function name error

Improper termination of statement

Not permitted by the loader; this check detects
gsome but not all occurrences.

Format reference is not staterment number or
array name .

Name is not variable or-array name

Implied DO without opening parenthesis, or null
implied DO, '

Non~numeric character within statement number
definition

I3

Staternent number reference exceeds five digits.
No statement number in a DO statement.

Already defined as array or external procedure
name, or used as variable,

86 o9eq

I S

Frror Cede

Description -

Comment oxr Example

H

STY Staternent type error Not correctly formed assignment, DO, or statement
function; first 4 leiters of keyword do not match;
keyword wrong length. -

TYS Type‘ statement syntax error

Warning Errors .

WDl Unterminated DO loop ‘

W2 Illegal DO termination Termination statement is not of permitted type

WEX Exponent under{low in real constant | Maximum value of exponent is 19 (approxrnately);
constant is set to zero.

WF1 Improper zero in FORMAT Format is stored as written

WF2 Parentheses nested too deep Format is stored as written

WE3. Improper scale factor Syntax indicates scale factor, but "P" mzssmg.
Format stored asg written

- WrF4 .Scale factor not followed by Format stored as written
conversion format

WS

Decimal point missing {rom
conversion {ormat

Format stored as written

66 e2deg

Error Code
At

Description

(gt

Comment or Example

WEF6

WHC

WN3
W N4

Wl

WQ2

WQ3

WSz

No digit following decimal
point

I--Iollerithlconstant count

error.

Doubly-defined statement
number

Statement number usage error .

No path
Numbered END line

Formal parameter of multiple
COMMON in EQUIVALENCE

COMMON base extended

back by EQUIVALENCE.

Special EQUIVALENCE rules
contravened

Logical constént gpelling

Formal stored as written

Maximum 12 characters in Hollerith constant
quoted as argument or in DATA statement,
First 12 are taken.

New definition is used it any subsequent references

FORMAT - agsociated label used in normal
reference, or normal label in input/output

. reference. (First appearance defined usage).

Unlabelled statement following GOTQ. RETURN, 1F.

Iteny is ignored.

Item ignored.

Lo g

! 3
o e

Error Code
s e A gyt piiiprmty

Descrigtion

Comment or Example ;

WX2

Warning Errors

Procedure call disagreement

Number of parameters quoted in two calls of same -
preocedure do not match

X1

X2
X3
X4

X5

Machine Code Errors

Illegal first character
Function code exceeds 31
Invalid operand

Invalid character

Field too long

t

¥First character iag letter, not F or

Not constant, variable, or array

-

Function exceeds 2 digits, label exceeds 5 digits, label
exceeds 5 digits.

YLO

YXM

YY

Vs

Invalid logical operator

Exponentiation mode error

Free~format line conversion
crroxr,

Compiler workspace full

- =i

Presumed operator starts with . but no correct form
follows, : '

First character not one of those permitted, or line
too long. :

Workspace is used for accumulating dictionary entries,
and also for transient purposes such as expression

-

10.2 Lloader Error Fessages

See MASIR manual.

Page 101

Run Time Errors

10:0

.10.3.1 Ezror reports from Mathematical Functions

In all these reports the first address is the call address and the second (if present) the operand address.

" - "MMM)
Error Code " Description Routine which may notify this error T
ECI | COverflow on conversion to integer QFP (arithmetic package), IFIX, INT, IDINT.
EDI Integer divident = -131072 QID (integer division routine), IABS.
EDZ Attempted division by zero QFP, QID, AMOD, MOD, DMOD.
EML Logarithm of negative or zero o ALOG, DLOG, ALOGI10, DLOGI10, CLOG.
argument requested : '
EMM Attermnpted exponentiation of "QER, QED. (exponentiation routines)
' negative real argument by ' |
negative real exponent.
EOI - Integer overflow as result of OFP, QEI (integer exponentiation), MAXI, MINI, ISIGN,
- | operation . IDIM,
“EQO - ' Exponent Overflow as result of QFrpP, QEC, EXP, DEXP, CEXP, DIM, 8NGL, CSIN,
operation, : CCOS, DIM,
. " ESN’ Square root of hcgative number SQRT, DSQRT
H requested
6 ‘ 2 |
- EZZ Attempted exponentiation of QEI, QER, QED, QEC
= . zero by zero g '

: On continuation, a zero result is returned except in the case of EDZ from MOD, AMOD or DMOD, when the |
' first argument is returned.

¢ 10.3.2 Input/Cutput Lrror Reports.

i

Routine name is always QIO {input/output package), the first address is the call address, and the second (if preéént)
the operand address. Final 6 characters are the beginning of the FORMAT.

Error Code Des cription Comment
EOI FREE format specified with WRITE o . N
operation, or logical item in list _ ' ‘ : ' ’
for free-format input, . \
EOQZ Type disagreement between format
and list,
EOQ3 . Initial character of format is not o . (Any leading blanks are ignored)
" | left parenthesis. : '
&
EO4 Illegal character in format.
EQC5 - Format syntax error
EOQ6 - Unmatched parenthesis in format
or parenthesis level greater than 2 -
EOQT Improper operation for device type. . e. gt REWARD paper tape., (Error in unit
‘ ' : number likely), : :
;U EOS8 : Improper QIO call A o Probably indicates serious errcr in program,
% ‘ ' ‘ e.g: overwriting, '
é WOl Illegal character in data -Restart causes continuation ignoring illegal
character,

——— Jusuodxa

1o xogqumu .mwmu@,wsﬁ,w.zﬁb?Go..Smdc..Eﬂou $98NT0 jxeIsoy

28uel jo Ino jusuodxny

2durt J0 1IN0 12323ul

EOM

r{OF. %

JUDWGIO D

OIS (T

SpOT) AGIIq

' Page 104

\

10.3.3 Control Error ‘&’epsrts

The table which folléws contains control error reports.

Routine Name

Error Code

Description

Comment

P OFP

EIF Invalid parameter | } Shouid only arise
= code } when QFP is called
! QFP EMS Invalid mode } from SIR segment or
setting } in-line code
- QCG ERR Index out of First address is call

range in
computed GOTO

and second is index
variable. Restart.
causes continuation

as though index variable
had value 1.

e —————

Page 105 & 106

CHAPTER 1l: OPERATING INSTRUCTIONS
The following sections contain the operating instructions (far 0pérating
within FAS or RADOS operating systemssee the appropriate Opera?mo’
----- System description) for a paper tape environment:

11.1 Compilation

13 Input the tape "505 ¥ORTRAN COMPILER" by initial
instructions {Entry at location 8§181].

2} Enter at location 16. Symbol —wx— will be output on the on-line
teleprinter. ' - :

3) -Specify the required option, by typing letter O-followed by one
or two digits, then newline,

The digits specify an octal number, the sum of the values required are

made up from:

01 Syntax check only, no code output.
0z Data Map requirf;d. ‘

B 04 Qutput data map to puﬁch. L 7, Lo V -)
10 Compressed integer array storage allocation, | 3

If option zero (00} is used, this in aplies normal COI’nDljatlon no data map,
and two words allocatad to each eloment of integer arrays {for compatab- :
ility with other FORTRAN compilers layout of COMMON areas). Option 3 o
requests a syntax check, with curput of data map to the on-line teleprinter.

4) Load the FORTRAN source prcnrw tape in the reader and type
M or R, to compile the program. Program units will be read and
processed until & halt code is read {or 'dictionary full’ error occurs),

5) To process fLmher srograms, repsat from step 3).
- 6) Wind up ezch relocatable hinary ou 'put tape as follows:

When punch cutput is completed tea> off the tape and label the o

underside of the end nearest the tear. Wind the tape to ensure ' ;
11t o]

that the labelizd end will be raad {irst by the read‘_r.

(&)

7 The units compiled are now ready to load and run. Program :
. I
units may e compiled In various ways i.e, -
Together

in & batch Lo

R o ' S ' Tage 107

|

11,2

The 300
FORTRA

Compilation of each unit {neain, iu-xc’_;on or sui) ~outing

900 Loader Operating struct*on* for FORTRAN use.

dant of other units in a program.

:

Loader' tape distributed with M _A.S‘“{ is aiso used to load 205 .
¢ 4

ot

i
L~

Yot

Lo
e

oy

d

[

N relocatable binary tapes generated by the compiler {sum-~chacsen

binary tape). Procecd as foliows

1)

2)

.4)

.5)-

Load the '900 LOADER’ by ini izax insty ruct cmé_{tmry at location
8181) ' S

Enter at location 15; symbol & is displayed on the teleprintesr.

Type Opt.iOns into the loader in the form:

Ofollowed by the option value in octal {see _sectioh 1L, 3} " B

Load the first relocatable binary tape inthe reader and iype
to enter the Loader. This tape is read until the tape readery
unioads,

Load subsequent tapes in the reader and press the READ button.

Press RESET, enter at location 16 and {ype option 03L to load
the first library tape called '905 FORTRAN LIBRARY VOL. 1t
However, if output is required to aaper tape, *be option 0171,
should be used. :

Load the tzpe 1905 FORTRAN LIBRARY VOL. 2' and press the
READ button. :

When all programs are loaded, press RESL‘T and enter at loczi:

16.

Type M.

If there are any unlocated labels, these are printed on the

teleprinter (i.e. global labels, program names or duta labels

referenced {rom programs loaded but not mc:ludcd on any ta
actually loaded).

If there are no unlocated labels, GO is output.

If loading was direct into store, the program may be started

by re-typing M. If the loading process pruduced 2 binary tape.
this should now be complete; type M, runout the tape and tear
off from punch,. : .

o

prrmeay

sy gy

P

10)

11.3

If there were hvllocdted labels; either return to step 3)or 6)tolead
further tapes, or type Mtorunthe programdisregarding the missing
labels {0V will beoutputtoindicate override, inthelatter case}. If
output was to paper tape, it will be completed, Ifloading was directto
core store, the program may be started by typing M again (i.e.
for the third time}.

If there is a MAIN program, the executable program will be
entered at this point, irrespective of the order of loading tapes.
The MAIN program may be either a FORTRAN main unit, or a
MASIR unit with global label MAIN. :

If there is no MAIN program, the executable program will be
entered at the first location of the first tape to be loaded. (it is
possible for this unit to be a FORTRAN subroutine with no
parameters, in which case the RETURN statement of that sube
routine must never be obeyed). '

If 2 sum checked binary tape was produced, this will be loaded by
initial instructions. When loaded, the program may be entered
by jumping to location 16 and typing M.

If an option is typed before typing M tc enter the program, this
will be held in the A Register on entry. This option may consist
of up to 15 digits (i.e. 5 octal digits) long.

Type C if continuation required after a halt code on inputting data,
PAUSE, or run time error message. R or C may be typed when-~

ever the symbol & 1is displayed.

Lozder Option Bits

The loader option must be eithér a one or two octal digits, the sum of the
digit values implied follow:)

Bit 1

Bit 3

Bit 4

‘Bit 5

if loader to be initialised {first prograrn tape).

0
"= 1 if loader not to be initialised {subsequent tapes)
0

if everything read is to be loaded

= 1 if library scan {only load prograrm units which have
been referenced but have not been located). Ignore
units which have already been loaded.

= ¢ if loader is to store program in core

= 1 if loader is to cutput program on paper tape or backing
store. :

= 0 if loader is to store program cn backing store,

.- 1 if loader is to output program on paper tape.

(Bit 4 is ignored if bit 3 = f})

i
=

if the program to be loaded is to use the built-inroutines

H
o

if program to be loaded does not use the built-in routines,

Page 1072

Bit 6. = ¢ - ignore o ,

' - freeze current dictionary and store lavout, If option with
bit 5 = 0 and bit 1 = 0 is now typed, the loader will be
reset but the programs already loaded will not be lost,
They will be preservedin store for use by future programs,
unless overwritien at runtime, '

h
Yot

Bit 7 = ignore

iist labels

print £irst/ﬁast mess5ages
suppress firstfiast messages

halt after warnings ¥*CLW, *COM

cantinue after warnings

Bit 8 =

Bit 9 =

-

11,4 Store Layont ' Lo S i i
11,41 Loading PR T
The loader occupies locations 128 to 2800 (approx.) ‘.
The program entry instructions occupy location 15 to 19

The dictionary, formed by the loader, occupies store from location 2800
upwards, with five locations more for each global label. ’

fa

Program is stored downwards in each module between the free store limits
set by LODSET. A store full indication is given if the program cannot be
stored without overwriting the loader or its dictionary. Blank COMMON

overwrites the loader from 128 upwards to the higher addressed store.

If a program cannot be inserted into a given store module it is loaded into
the next module down (Down indicates towards the lower addressed end of
core store), if sufficient space is available.

1f loading via paper tape reader, the program is not actually stored, so
that the store used by the 'Loader' and its dictionary may be filled with
program, down to the top of the blank COMMON block, or location 128

if there is no COMMON,

11.4.2 Different Store Sizes

I a core store of more then 16K is used, LODSET is used to set the
actual store limit LODSET is built into the '900 Loader' and its usc is
described in the MASIR operating instructions. ’

905 FOR TRAN programs require 16K of store for compilation since the
compiuter and its dictionaries efc. occupy at least 10K of store. However,

it is possible to load and run programs on an 8K 900 series computer, if
the loader is set for 8K operation by LODSET. : ‘

11.4.3 Library

The '905 FORTRAN LIBRARY VOL. 1! cortain all the Intrinsic ard Basic
Externzl Functions and special FORTRAN object time routines.

Page 110

Ty
il

At
¢

1905 FORTRAN LIBRARY VOL. 2' contains the [loating point, double length
and complex arithmetic routines (QFP), the READ/WRITE routines {QIO)
and PTEXEC. PTEXEC contains character input/cufput, error routines

and program control (see EX200).

11,5 Store Map at Run~time

Store maps for typiéal program in either 16K or 24K store follow:

PROGRAM UNIT
A

NAMED COMMON X

PROGRAM UNIT
B

The 1
r

gCI‘;@

24K

Module 2

Module 1

Module O

16384 ?NAME‘D COMMON
L Y 16383 NAMED COMMON U
: PROGRAM UNIT
NAMED COMMON Z E
PROGRAM UNIT NAMED COMMONYV
C PROGRAM UNIT F
L,
LIBRARY ROUTINES LIBRARY ROUTINES
8192 UNUSED STORE 8192 UNUSED STORE
B 8130 UNUSED 8130 SCB Loader
PROGRAM UNIT PROGRAM UNIT
LIBRARY ROUTINES
PTEXEC (Library) Library
UNUSED STORE Routines
2800 BLANK PTEXEC (Library)
\ UNUSED STORE
OMMON
- ¢ * BLANK COMMON
128 128 .
A.T.U. LOCATIONS 32 | A.T.U, LOCATIONS
ENTRY POINT ETC., 16 | ENTRY POINT ETG.,
SYSTEM LOCATIONS g8 | SYSTEM LOCATIONS
REGISTER STORES 0 | REGISTER STORES

16K

\ Space

1 Ocupied-
by .

[LOADER

6K version on the right can only be loaded bﬂj allowing the loader to
ate sum checked binary paper tape.

Page 111

:
i
§

These maps only apply to paper tape-environment { but not to either the
FAS or RADOS euvmo-unent}

Tbe total library routines should occupy about 9K of core store, but it is
highly unlikely that any one program would use all the routines. Only those

.routines required are actually loaded with a few exceptions, e.g. if SIN is

required DSIN will also be joaded, since these are to be found in the same
program and use the same main code section.

The majority of programs will require routines Q¥P, QIO and PTEXEC,
which together cccupy approximaiely 4000 words. Integer only programs
will omit the routine QFP {approx. 700 words) and programs without READ
or WRITE statements will omit routine QIO (input/output package ~ approx.
2800 words). Input and/6r output could be entirely in Assembl‘y code. Any
FORTRAN program using any STOP, PAUSE, READ or WRITE statements

will use PTEXEC (approx. 500 words). o R

AR ' : TS Page 112

APPENDIX 1: BASIC SUPPLIED FUNCTIONS

Tables A.1.1 and A.1.2 lists both pasic external functions and intrinsgic

functions supplied with all 905 Compilers. The principal difference between

Basic External functions and Intrinsic functions is that the formexr may be
ased in EXTERNAL staternents, and be replaced by user's own versions.
However, the Intrinsic function cannot be replaced by user's own version.

App.1 -~ L.

xorduwon xo1duon LYUSD i
aTqno ([BIgno] - Laosa I |
L qeey reoy LADS ; e f 100Y TUVADS
(20 [eoy HNVL 1 (B)quer | LNEDNVI DITOUUIIAH
Eo
xa7dwo D xa1dwon , SO0 I
arqno g syqnog s0od ¥
(suerpes ur w
1RO W TeaY . SOD T (®) 500 { ANISOD DI LIANONODIYL
xarduwo xa1duwio 9 | NISD 1
e1qne(~®laned NIsd ! (suerpex uy)
180y Teoy NIS X (e)urs INIS DIYLIANONODINL
arqno a1qno (g iigslelate;)
Teoy 1E0Y 01DOTY t (2)01801] WHLIMVDOT NOWANOD
xo1duwon xarduwe N DOTID 1
a1qno(l srquog D01 T
Tesy Teay DOTV 1 ()®801| WHITYVDOT TVINLVYN
“xerduron) xo1dwo D AXHAD 1
eIanO] a1gnog dXHO 1
1eey reoy. dXT T e? TVILNANOIXE
NOILONNI INAWNDUYT HINVN SLNHWODEY _ o .
a0 TIL L SITOUWAS HO WTIWAN NOILINIAZQ NOILDNAOJA TVNYILXHE

SNOILONOA TVNYELXE DISVE 1°1°V AIgvL -

ipp. 1 -~ 2

xayduo D xo1duro SgvVD 1 SOTNAONW
s1qnoQ a1qno (Y AOWa z (Yz pour)le BNTYTANIVIN T E
o1qnoQ PIqRO (] VIV Z
129y 1e9y CINVIV 7 (e /le) ueinae |
srom oTato N : Ammd.ﬂmu,w.m ur ‘anjwa
J1aned quogy NYILVQ 1 Tedioutad o4y sy Hos03)
TEay 120y NV I i (e) ueiioe INAONVILOYY
NCTIONR INGWNADYY | amvn T ——
, IO MO T _ SITOCN &S 5o v ginnN | NOILINIIZQ NOILONNI TVNYILXE

(P3wOD) SNOILONAL TVNYHLXE DISVE 1°1'V ZT4VE

App. 1 -3

y - fddy

......

TABLE A, 1.2 INTRINSIC FUNCTIONS

ABSOLUTE VALUE | o | 1 ABS Real Real
IABS Integer Integer
DARBS Double Double
TRUNCATION Sign of a times \ AINT Real Real
| lgr""ft integer INT Real Integer
IDINIT Double Integer
REMAINDERING * ay (mod aj) 22 AMOD Real Real
h MOD .In;eger' ' Integer
CHOOSING LARGEST MAX (ay,ap ...} 22 AMAXO Integer Real
ALUE AMAXL ° Real Real
MAXQ Integer Integer
MAXI Real Integexj -I
: _ _ ‘ DMAXI Double - Double
CHOOSING SMALLEST | MIN(aj,az,....)| 32 AMING Integer Real
VALUE '
AMINI Real Real
MINO Integer . Integer
MINI Real Integer.
DMIN g} —Double Double

-ddy

§-1

TABLE A.1.2 INTRINSIC FUNCTIONS {Cont'd)

7

‘ NUMBER OF | SYMBOLIC TYPE OF
H 0N J [+ 4 A~ I - ;
EXTERNAL FUNCTION DEFINFTION ARGUMENTS NAME ARGUMERNT: FUNCTION
FLOAT Qonverszpn from 1 FLOAT Integer Real
integer to
real
rix Conversion Iron?{,
real to integer | 1 IFIX Real Integex
(as for INT)
A\NSFE ; 31 f - ‘
TRANSFER OF SIGN s grnofap 2 SIGN Real Real
times |[a;
ISIGN . Integer Integer
DSIGN Double Double
POSITIVE DIFFERENCE | a;-Min (a1,a;) 2 DIM Real Real
IDIM Integer Integer
Obtain most sig. part _
- of Double Precision , 1 SNGL Double Real
Argument ‘
Obtain Real part of 1 REAL Complex Real
Complex Argurment '
Obtain Imaginary part S AIMAG
Co 1 G
of COMPLEX argument ompiex Real
Express Single
Precision Argument 1 DBLE REAL DOUBLE
in Double Precision ' ‘ '

Appe 1 -6

‘ . . wownday
. . . xo1dwod ® Jo
xo1dwon xs1duron O.M.ZOU . 1 worednfuo s WwMAo
- _ Wa0 g
xo1dwoD utr sjuswnay |
- pleyl a ’ :
xs1duron reoy XTdWD 2 - fleile [eoy om], sso1dxn ‘
. NOILONNA INTNODYVY HINYN SLNIWADYEV . :
N X
_ L ET T DITOUWAS | 40 WTTWNAN NOILINIIZJ R OH.H_U.ZD,m TVNYILXEI

,?Lﬁ.oov SNOILONAA DISNIYINI 2°'1'V TTEVL

RSO s o [T —

APPENDIX 2: BIFFLRE\TCES B‘"TW JEN ASA AND 905 FORTRAN

905 FORTRAN is ASA standard FORTRAN, as defined in USASI documnent
X3-9-1966 with the {ollowing extensions and restrictions.

a) The following are extensions to ASA standard FORTRAN.

I. Optionally, free format may be used for program and data
. {see Chapter 5}.

N A Y
2. Facilities for in-line machine code (see Chapter 7).

. 3. Some relaxation of ASA standard rules on the mixing of arith-
metic modes {see Chapter 3}.

4. Option of packed integer arrays (see Chapter 2).

b} The following are restrictions in 905 FORTRAN which are not
- presentinASA FORTRAN. :

1. Restrictions on the sequence of statements within a subprogram.
The statements which make up a program unit must appear in
the following sequence:

(1) SUBROUTINE or FUNCTION (ex_(:evpt in a main program)
o (ii} Specification statements _
(iii) DATA statements
R " (iv) Statement function definitions

{v)} Executable statements, FORMAT stdtements "nd
in-line machine code sections intermixed {in any order).

(vi) END line.

-

2. Restrictions on the sequence of items'w ithin an EQUI‘\/’ALE’\C'!*,
group i.e. a set of parenthesmed 1tems in an EQUIVALENCE

statement.

a) If a group of equivalenced items includes an item which |
is also in COMMON, that item must appear first in the
equivalence group.’ ’

b) If the same name appears in mare than one group that
name must appear at the beginning of the second and
any subsequent group in which it occurs.

Bestrictions on names

(¥R)

The name of a COMMON block must not be the name of a
FUNCTION statement. There are also certain restrictions
on names beginning with the letter Q (sce uhaoter 2}.

|

and

4. Printing of Formatied Records
Standard Fortran specifies that the {irst character of a
" formatted record is not printed, but used ior vertical
- format control. S05 FORTRAN does_print this character.

5. No BLOCK DATA subprograms in 905 FORTRAN.
Compatability between different E"ORTRAN implementations,

The use of 'A' format almost always causes comnabab'i'ty .
problems. 905 FORTRAN makes it possible to store up t
three characters par 18- b“ wo?d for each 'A‘ format s spe
(sae Chapter 5) I N I

cii'

‘This problem ma’.y be overcome by - o s

(3} storing only one chara cter per storage unit
(ii) avciding arithmetic OP“I‘&ELOHS o=- tests on the stored
characters, ‘

A program wrltten in FORTRAN in one FGRTRAN implementation
(on one particular machine) will not necessarily produce the same
results on another FORTRAN implementation. The factors which

may cause the program to give cifferent resulis include:

a) Different word lengths and internal number representation.

b} Use of compiler facilities which are extensions fo the
standard FORTRAN, such as those described for 905
FORTRAN. i

c} Conscious or unconscious dependance on effects which are

specific to given compiler system,

"An example of ¢} would he use of a labelled COMMON block ina

subroutine; the block not declaved in the main program. Iin 905
FORTRAN paper tape compiler environment, the data in the

COMMON block will be preserved when the subroutine is re-entered

after a return is made to the main program, In systems which
use overlays, the data will not necessarily be preserved Thus a
working program may {unknown to the programimer) be using data
which is explicitly undefined within the language, and so would
therefore have a different effect on different machines., These
points are discussed in the National Computing Centre (N.C.C.)
iStandard Fortran Programming ?viamml‘ in the N.C.C. Computer
Standards Series,

APPENDIX 3: EFFICIENCY CONSIDERATIONS

It is impractical te give détailed rules on the writing of ‘efficient programs,
since these would involve detailed knowledge of the compiler. However, the
foltowing notes may assist the programmer in economising on either the
store used, or the time taken when running his program.

Program Size

Use of the "packed integer arrays” option will reduce the space required

‘for holding such arrays; the only disadvantage arising is in the lack of strict

compatibility with ASA standards, and hence with various other cornpilers.

Each subprogram requires some 20 - 30 words for prologue and argument
addresses, and these "red tape' operations alsc take extra time; it is
thercfore inefficient to break a program up into a large number of small
segments. On the other hand, in an 8k store there is a definite limit to
the size of program unit which can be handled by the compiler. Some
compromise is therefore needed. = -~ i _

Somewhat similar considerations apply to statement functions, ‘which
carry an overhead of about 18 ~ 25 words. A statement function which
performs a trivial operation may take up more space than it saves.

Program Speed

In any program involving floating-point computation, the factor gmferz:;ing
the running speed is likely to be time taken by the arithmectic package to
perform the computaticns, together withany type conversions involved.
The extent of the computation is normally related in a fairly obvious way
to the source program - repetition of sub-expressions, for example, will
tend to give rise to repeated caleulation {though the compiler will eliminate
this in some instances). Any calculation within a DO loop will be repeated
as often as the loop, so that any process not related to the value of the
control variable should be performed bhefore the DO statsment, The
question of the type conversion is less obvious, however. It is permissible
to introduce integer constants into a real expression, buf they must then
be converted at object time whenever the expressioﬂ is evaluated, which

is inefficient; i{ an integer sub-expression involves variables, onthe

other hand, any constants should be written in integer form, and one
conversion will then be made on the value of the expression.

A program which involves only integer working will not be dominated by
any one factor in the same way, and the overheads involved in subrouatine
entry, for exarnple, may start to become significant. In this context, it
should be noted that integer division is performed by a subroutine involving
about 40 instructions cheyed in a normalmanner, and it is therefore very
much slower than any arithimetic operation.

The difference between the implementation of assigned GOTO and

computed GOTO results in the former being faster; it would normally
only be noticeable inaninieger program. -There is good reason for using

the computed form as a normal practice, but = relia’r?le program may gein
a little extra speed from conversion +o use the zssigned form instesd.

Appe 3 - 1

B R U e

